-
酚醛树脂生产过程中会产生大量高浓度酚醛树脂废水,我国每年生产酚醛树脂产生的废水可达到8×106 t。酚醛废水中含有大量挥发酚、苯酚和游离甲醛,还含有部分甲醇和少量低分子树脂等有毒物质,其中,甲醛>1 000 mg·L−1,苯酚>5 000 mg·L−1,COD>10 000 mg·L−1,属于高浓度难降解有机废水。
酚醛废水处理的复杂性限制了某些单一的低成本处理工艺的发展及应用,故目前通常采用多种工艺联合的方法。其中,以化学-生物联用法较为普遍[1-3]。由于酚醛废水中含有大量的苯酚和甲醛,对微生物有很强的毒性和抑制性,且实际废水的可生化性差(BOD5/COD在0.10左右),因此,预处理的作用显得至关重要。常用的预处理技术包括萃取法、缩合法、生物处理法、Fenton氧化法、臭氧氧化法和铁炭微电解等[3-4]。其中,铁炭微电解法因其具有设计简单、效果稳定、人工容易操作且易实现工业化等特点而备受关注。铁炭微电解法利用Fe/C原电池反应对废水进行处理,且集氧化还原、絮凝吸附、催化氧化、络合、电沉积以及共沉淀等作用于一体[5]。然而,对于高浓度酚醛废水的处理,铁炭微电解也同样存在局限性。有研究[3]表明,以铁炭微电解为单一预处理工艺进行高浓度酚醛废水处理时,出水还达不到后续生化处理的要求。也有研究[5]表明,在好氧条件下,铁炭微电解与生物降解协同作用强化了煤气化废水中酚类物质的去除;在厌氧条件下,铁炭微电解也可以强化污泥的厌氧消化,包括厌氧水解酸化和产甲烷[6]。纯菌实验研究结果[7]也表明,铁炭微电解与微生物共作用能有效提高难降解有机物(十溴联苯醚)的生物降解效率。此外,铁的投加有助于微生物反应过程中的电子传递,从而加速有机物的降解[8]。
基于以上研究结果,本研究将铁炭微电解工艺和活性污泥组合在同一个系统中,构建铁炭微电解与微生物共作用的预处理系统。不同于以往将铁炭微电解作用于曝气和酸性条件下,为了实现预处理工艺的低成本,本研究探究了未曝气情况下微生物辅助铁炭微电解对中性酚醛废水的处理效果,分别对铁碳填料和污泥投加量进行了优化,并采用实际酚醛废水进行预处理进水负荷的研究,最终实现酚醛废水的有机物稳定去除,并为后续生物反应提供可生化性底物。本研究可为铁炭微电解和微生物共作用的预处理工艺的启动和运行提供参考。
铁炭微电解与微生物共作用预处理酚醛废水
Pretreatment of phenolic wastewater by iron-carbon microelectrolysis with microorganisms
-
摘要: 通过构建铁炭微电解与微生物共作用预处理体系,以处理酚醛废水。分别考察了体系中COD、苯酚和甲醛的去除率。结果表明:相较于单独的铁炭微电解或微生物处理体系,铁炭微电解与微生物的协同作用促进了苯酚和甲醛的降解,铁碳填料最佳投加量为1 400 g·L−1,污泥最佳接种量为10%;当进水COD为12 000 mg·L−1、苯酚为1 676 mg·L−1、甲醛为370 mg·L−1时(原水5倍稀释),系统中COD、苯酚和甲醛的去除率分别为39.75%、64.46%和84.07%左右,为后续进行厌氧反应提供了有利的条件。此外,厌氧实验结果表明,厌氧生物处理对高浓度的苯酚降解作用有限。以上研究结果可为开发高效低成本的酚醛废水预处理工艺提供参考。Abstract: Pretreatment system of iron-carbon micro-electrolysis coupled with microorganisms was constructed to treat phenolic wastewater in this study, and the degradation rates of COD, phenol and formaldehyde were investigated. Results showed that the system of iron-carbon micro-electrolysis coupled with microorganisms had higher removal rates of phenol and formaldehyde than iron-carbon micro-electrolysis system or biological treatment system alone. The optimal dosage of iron carbon filler and sludge inoculation were 1 400 g·L−1 and 10%, respectively. The results also showed that the concentrations of inlet COD, phenol and formaldehyde of 12 000, 1 676 and 370 mg·L−1 (5 times-dilution of the original water) were the appropriate inlet load for pretreatment, and their removal rates reached 39.75%, 64.46% and 84.07%, respectively, which provided the favorable conditions for the subsequent anaerobic treatment. In addition, anaerobic biological treatment had limit effect on the degradation of phenol. In this study, a new technology was proposed to the development of pretreatment process of phenolic resin production wastewater with high efficiency and low cost.
-
Key words:
- iron-carbon micro-electrolysis /
- microorganisms /
- phenolic wastewater /
- pretreatment
-
表 1 铁碳填料和污泥投加比例正交实验及单因素实验参数设计
Table 1. Orthogonal experiment for iron-carbon filler and sludge inoculation dosages and single factor experiment parameter design
编号 铁碳填料
(Fe/C)/
(g·L−1)污泥
(S)/%铁碳填料
(Fe/C)
投加量/g污泥投加量
(颗粒/絮状,
1∶1)/gMix1 313.60 15 94.08 45 Mix2 500 20 150 60 Mix3 500 10 150 30 Mix4 800 10 240 30 Mix5 800 15 240 45 Mix6 950 15 285 45 Mix7 950 22.07 285 66.21 Mix8 950 10 285 30 Mix9 950 7.93 285 23.79 Mix10 1 200 15 360 45 Mix11 1 400 10 420 30 Mix12 1 400 20 420 60 Mix13 1 586.40 15 475.92 45 S1 0 7.93 0 23.79 S2 0 10 0 30 S3 0 15 0 45 S4 0 20 0 60 S5 0 22.07 0 66.21 Fe/C-1 313.60 0 94.08 0 Fe/C-2 500 0 150 0 Fe/C-3 800 0 240 0 Fe/C-4 950 0 285 0 Fe/C-5 1 200 0 360 0 Fe/C-6 1 400 0 420 0 Fe/C-7 1 586.44 0 475.93 0 表 2 反应体系中COD去除率
Table 2. COD removal rates in reactors
编号 实测COD
去除率/%铁碳填料单独
作用COD
去除率/%污泥单独
作用COD
去除率/%共作用
COD去
除率/%Mix1 22.35 15.2 5.98 1.17 Mix2 25.64 16.34 7.73 1.57 Mix3 26.22 16.34 5.66 4.22 Mix4 25.68 16.98 5.66 3.04 Mix5 27.05 16.98 5.98 4.09 Mix6 28.96 17.66 5.98 5.32 Mix7 29.56 17.66 8.08 3.82 Mix8 28.93 17.66 5.66 5.61 Mix9 25.32 17.66 4.27 3.39 Mix10 27.41 18.02 5.98 3.41 Mix11 30.41 20.13 5.66 4.62 Mix12 30.25 20.13 7.73 2.39 Mix13 30.29 21.09 5.98 3.22 表 3 厌氧体系中苯酚和甲醛的去除率
Table 3. Removal rates of phenol and formaldehyde from anaerobic systems
编号 厌氧进水
BOD5/COD甲醛初始浓
度/(mg·L−1)苯酚初始浓
度/(mg·L−1)甲醛去
除率/%苯酚去
除率/%AD1 0.41 0 0.39 — — AD2 0.36 2.44 25.33 100 26.24 AD3 0.35 4.60 54.38 100 6.80 AD4 0.35 11.82 119.27 100 4.69 AD5 0.32 30.55 401.94 100 1.62 AD6 0.40 0 0 — — AD7 0.38 5.61 25.38 100 27.05 AD8 0.35 7.26 38.38 100 7.71 AD9 0.34 19.37 128.34 100 3.38 AD10 0.32 72.17 433.63 100 1.36 -
[1] 王飞. Fenton与生化组合工艺处理酚醛生产废水[J]. 水处理技术, 2016, 42(5): 128-135. [2] 陈裕武. 电化学氧化法与生物流化床技术组合工艺处理酚醛树脂废水的研究[D]. 南京: 南京理工大学, 2008. [3] 吕阳. 微电解-芬顿氧化法处理酚醛生产废水技术研究与应用[D]. 无锡: 江南大学, 2014. [4] 陈潇, 周雪飞, 张亚雷, 等. 酚醛废水处理技术研究进展[J]. 环境保护科学, 2011, 37(4): 4-6. doi: 10.3969/j.issn.1004-6216.2011.04.002 [5] MA W, HAN Y, XU C, et al. The mechanism of synergistic effect between iron-carbon microelectrolysis and biodegradation for strengthening phenols removal in coal gasification wastewater treatment[J]. Bioresource Technology, 2019, 271: 84-90. doi: 10.1016/j.biortech.2018.09.084 [6] 张磊, 郑重, 魏春飞, 等. 铁碳微电解强化污泥厌氧消化的研究[J]. 中国沼气, 2018, 36(6): 11-15. [7] 刘莉莉, 刘瑞红, 陈轶伦, 等. 铁碳微电解与微生物共作用降解BDE-209[J]. 环境工程学报, 2015, 9(12): 6161-6166. doi: 10.12030/j.cjee.20151282 [8] WEI W, CAI Z, FU J, et al. Zero valent iron enhances methane production from primary sludge in anaerobic digestion[J]. Chemical Engineering Journal, 2018, 351: 1159-1165. doi: 10.1016/j.cej.2018.06.160 [9] PAN X, ANGELIDAKI I, ALVARADO-MORALES M, et al. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization[J]. Bioresource Technology, 2016, 218: 796-806. doi: 10.1016/j.biortech.2016.07.032 [10] 唐应彪, 崔新安, 李春贤, 等. 铁碳微电解法净化焦化放空塔含油废水技术研究[J]. 炼油技术与工程, 2019, 49(4): 60-64. doi: 10.3969/j.issn.1002-106X.2019.04.014 [11] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [12] PAN X, LYU N, LI C, et al. Impact of nano zero valent iron on tetracycline degradation and microbial community succession during anaerobic digestion[J]. Chemical Engineering Journal, 2019, 359: 662-671. doi: 10.1016/j.cej.2018.11.135 [13] WANG T, ZHU G F, LI C X, et al. Anaerobic digestion of sludge filtrate using anaerobic baffled reactor assisted by symbionts of short chain fatty acid-oxidation syntrophs and exoelectrogens: Pilot-scale verification[J]. Water Research, 2020, 170: 115329. doi: 10.1016/j.watres.2019.115329 [14] ZHANG G, WEN H, JI G, et al. Pretreatment of composite organic acid cleaning wastewater by iron-carbon micro-electrolysis process[J]. Thermal Power Generation, 2017, 3: 93-97. [15] 郭玉文, 袁东. 对CODCr测定中干扰因素及其消除方法的探讨[J]. 环境工程, 2007, 6(6): 74-75. [16] QU M, BHATTACHARYA S K. Toxicity and biodegradation of formaldehyde in anaerobic methanogenic culture[J]. Biotechnology & Bioengineering, 1997, 55(5): 727-736. [17] WANG M, XU S, LI S, et al. Isolation of formaldehyde-degrading bacteria and the evaluation of the degradation characteristics[J]. Journal of Industrial and Engineering Chemistry, 2019: 224-229. [18] SIEBER J R, MCINERNEY M J, GUNSALUS R P. Genomic insights into syntrophy: The paradigm for anaerobic metabolic cooperation[J]. Annual Review of Microbiology, 2012, 66: 429-452. doi: 10.1146/annurev-micro-090110-102844 [19] 柯水洲, 张明, 胡翔, 等. 苯酚厌氧降解的研究及应用[J]. 工业水处理, 2007, 27(2): 9-12. doi: 10.3969/j.issn.1005-829X.2007.02.003