-
自我国2013年《实行最严格水资源管理制度考核办法》以来,各地政府积极响应“三条红线”、“四项制度”,河湖长制下的水环境治理已初见成效[1]。然而,广大农村地区污染来源复杂,分布广泛,其治理难以有针对性[2-3]。在点源污染得到逐步削减管控的同时,非点源污染的管控治理问题显得尤为重要[4]。因此,量化分散型污染的分布特征对于未来水环境污染管控治理具有重要意义。
目前,国内外对于水环境污染的量化手段主要分为野外监测法、排放系数法和水文水质模型法[5]。野外实地监测法劳动强度大、周期长、费用高,往往由于数据资料缺乏或可靠性差等原因,影响污染负荷的估算精度。输出系数法主要基于土地利用数据和社会经济统计数据进行负荷估算,在监测数据稀缺的地区具有一定优势[6]。李淼泉等[7]构建了流域非点源水污染排放清单估算系统,对全年及年内各分水期非点源水污染排放进行了估算。谭铭欣等[8]综合监测数据和统计数据,利用排放系数法估算了御河流域水污染负荷。近年来,水文水质模型发展迅速,包括SWAT、HSPF、SWMM模型等[9-10],能够综合水文过程、土壤侵蚀以及污染源输移过程模块从而全面真实地实现流域污染源的模拟与计算[11-12]。康峤[13]采用WASP-HSPF耦合模型模拟了第二松花江松林断面BOD5及氨氮浓度。姚焕玫等[14]基于SWMM模型构建了南宁市区地表径流及非点源污染精细化雨水径流模型。尽管以往研究很好地量化了点源和非点源污染,但考虑到经济成本和实施难度[15-16],对整个流域防控整治并不实际。在实际污染管控中,现有研究成果仍难以被应用于制定具有针对性的防治措施[17-18]。因此,未来应在污染负荷量化的基础上,识别其污染控制的关键源区并作为重点区域进行管控,从而提高流域污染管控效率[19]。
义乌江流域内存在大量农村生活污水和农业、畜禽养殖场为主的污染源,水环境污染管控已成为该流域水环境治理的重中之重,急切需要流域尺度的管控措施[20-21]。本研究应用SWAT模型对义乌江流域进行水环境污染模拟,量化了流域内水环境污染负荷,并鉴别污染关键源区,可为后续流域治理与水环境污染防控提供参考。
流域水环境污染模拟及关键源区鉴别——以义乌江流域为例
Simulation of water environmental pollution and identification of key source areas —A case study of Yiwu River Basin
-
摘要: 以义乌江流域为研究区,应用SWAT模型模拟流域的径流、泥沙与水质过程,在分析流域内水文过程与污染负荷(总氮、总磷)时空分布特征的基础上,采用单位面积负荷指数法确定各子流域的氮磷流失强度,并划分5个等级,进而识别水环境污染的关键源区。结果表明:1)生活污染源是义乌江流域水环境污染的主要来源,氮磷的输入占比分别为52.7%和61.9%;2)氮、磷污染负荷排放主要集中在3—7月,分别占全年的66%和63%,高负荷强度区主要集中在义乌市城西街道、佛堂镇、东阳江镇和双溪乡;3)义乌江流域的关键源区为18个子流域中的4个子流域。基于流域水环境污染定量模拟识别,建立了关键污染源区的识别方法,可为高污染负荷流域的水环境污染防控提供参考。Abstract: The runoff, sediment and water quality processes of the Yiwu River Basin were simulated based on SWAT model. The Load Per Unit Area Index mothod was used to calculate the intensity of nitrogen and phosphorus loss and divide the loss intensity into five gradesfor the identification of the key source areas. Results show that domestic pollution sources are the main sources of water environmental pollution in Yiwu River basin, and the input proportion of nitrogen and phosphorus is 52.7% and 61.9% respectively. Nitrogen and phosphorus pollution load mainly concentrated in the flood season (March to July), accounting for 66% and 63% of the whole year respectively. The high load areas of nitrogen and phosphorus pollution are mainly concentrated in Chengxi street, Fotang town, dongyangjiang Town and Shuangxi township. The key source area of Yiwu River Basin are 4 of the 18 sub-basins. Based on the quantitative simulation identification of water environmental pollution in the river basin, this study established the identification method of key pollution source area, which can provide reference methods for the prevention and control of water environmental pollution in the river basin with high pollution load.
-
表 1 义乌江流域氮磷输入量对比
Table 1. Comparison of nitrogen and phosphorus inputs in Yiwu River Basin
污染源类型 氮源输入/t 氮源占比 磷源输入/t 磷源占比 生活污染源 2 994.2 52.7% 164.9 61.9% 农业畜禽养殖 1 187.4 20.9% 28.8 10.8% 农业化肥 1 499.9 26.4% 72.7 27.3% 总计 5 681.5 100% 266.4 100% 表 2 参数意义及取值
Table 2. Meaning and value parameters
编号 径流参数 参数定义 定义变量 参数调整方式 调整范围 1 CN2 径流曲线数 .mgt r ~1~1 2 ALPHA_BF 基流消退系数 .gw v 0~1 3 GW_DELAY 地下水滞后系数 .gw v 0~500 4 GW_REVAP 地下水再蒸发系数 .gw v 0.02~0.2 5 CH_N2 主河道曼宁系数 .rte v −0.01~0.3 6 PRF_BSN 主河道泥沙峰值速率 .rte v 0~2 7 ADJ_PKR 子流域泥沙峰值速率 .bsn v 0.5~2 8 SPCON 泥沙输移线性参数 .hru r 0~2 9 BIOMIX 生物混合效率 .mgt v 0~1 10 ERORGP 有机磷富集率 .hru v 0~5 11 PPERCO 磷渗透系数 .bsn v 10~17.5 12 PHOSKD 磷土分配系数 .bsn v 100~200 13 ERORGN 有机氮富集率 .hru v 0~5 14 NPERCO 氮渗透系数 .bsn v 0~1 15 LAT_ORGN 基流有机氮含量 .gw v 0~200 16 CH_OPCO 河道中有机磷的浓度 .rte v 0~100 17 SOLN_CON 径流中可溶性氮浓度 .hru v 0~10 表 3 关键源区污染物分级标准
Table 3. Key source area classification standard
评价等级 TN/(t·km−2) TP/(t·km−2) 轻 0.55~1.65 0.01~0.03 中 3.094.49 0.16~0.25 较重 4.50~10.00 0.26~0.49 重 10.01~12.65 0.50~1.00 -
[1] HUANG J, ZHANG Y, ARHONDITSIS G B, et al. How successful are the restoration efforts of China's lakes and reservoirs?[J]. Environment International, 2019, 123: 96-103. doi: 10.1016/j.envint.2018.11.048 [2] 陈铁, 孙飞云, 杨淑芳, 等. 基于SWAT模型的观澜河流域城市面源污染负荷量化及影响效应评估[J]. 环境工程学报, 2020, 14(10): 2866-2875. [3] 张昊天, 周忠发, 刘贤梅, 等. 基于GIS的红枫湖流域平坝区境内农业非点源污染估算[J]. 环境工程, 2019, 37(3): 174-179. [4] 朱瑶, 梁志伟, 李伟, 等. 流域水环境污染模型及其应用研究综述[J]. 应用生态学报, 2013, 24(10): 3012-3018. [5] 陈学凯, 刘晓波, 彭文启, 等. 程海流域非点源污染负荷估算及其控制对策[J]. 环境科学, 2018, 39(1): 77-88. [6] 李政道, 刘鸿雁, 姜畅, 顾小凤, 涂宇. 基于输出系数模型的红枫湖保护区非点源污染负荷研究[J]. 水土保持通报, 2020, 40(2): 193-198. [7] 李淼泉, 田恬, 陈奔, 等. 流域非点源水污染排放清单估算系统构建[J]. 中国环境管理, 2019, 11(2): 94-100. [8] 谭铭欣, 李天宏, 赵志杰. 山西省御河流域水环境污染负荷估算及来源[J]. 南水北调与水利科技, 2019, 17(5): 90-99. [9] JOY T A, MUTHUKRISHNA V K. Assessing non-point source pollution models: A review[J]. Journal of Environmental Study, 2018, 27(5): 1913-1922. doi: 10.15244/pjoes/76497 [10] 杨凯杰, 吕昌河. SWAT模型应用与不确定性综述[J]. 水土保持学报, 2018, 32(1): 17-24. [11] CAKIR R, MÉLANIE RAIMONET, SAUVAGE S, et al. Hydrological alteration index as an indicator of the calibration complexity of water quantity and quality modeling in the context of global change[J]. Water, 2019, 12(1): 115. doi: 10.3390/w12010115 [12] BUGAETS A N, GARTSMAN B I, LUPAKOV S Y, et al. Modeling the hydrological regime of small testbed catchments based on field observations: A case study of the Pravaya Sokolovka River, the Upper Ussuri River Basin[J]. Water Resources, 2019, 46(S2): S8-S16. doi: 10.1134/S0097807819080037 [13] 康峤. 基于WASP-HSPF耦合模型的第二松花江松林断面水质模拟研究[D]. 长春: 吉林大学, 2016. [14] 姚焕玫, 卢燕南, 王石. 基于SWMM模型的南宁市海绵城市建设优化模拟[J]. 环境工程, 2019, 37(11): 102-109. [15] HUANG J, LIN X J, WANG J H, et al. The precipitation driven correlation based mapping method (PCM) for identifying the critical source areas of non-point source pollution[J]. Journal of Hydrology, 2015, 524: 100-110. doi: 10.1016/j.jhydrol.2015.02.011 [16] WINCHELL M F, FOLLE S, MEALS D. Using SWAT for sub-field identification of phosphorus critical source areas in a saturation excess runoff region[J]. Hydrological Sciences Journal, 2015, 60(5): 844-862. [17] LIU R M, XU F, ZHANG P, et al. Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT[J]. Journal of Hydrology, 2016, 533: 379-388. doi: 10.1016/j.jhydrol.2015.12.024 [18] JEON J H, CHOI D H, LIM K J, et al. Automatic calibration of stream flow and nutrients loads using HSPF-PEST at the Bochunga Watershed[J]. Journal of the Korean Society of Agricultural Engineers, 2010, 52(5): 77-86. doi: 10.5389/KSAE.2010.52.5.077 [19] DONG F, LIU Y, WU Z, et al. Identification of watershed priority management areas under water quality constraints: A simulation-optimization approach with ideal load reduction[J]. Journal of Hydrology, 2018, 562: 577-588. doi: 10.1016/j.jhydrol.2018.05.033 [20] 何梦男, 张劲, 陈诚, 等. 上海市淀北片降雨径流过程污染时空特性分析[J]. 环境科学学报, 2018, 38(2): 536-545. [21] 刘章君, 郭生练, 许新发, 等. 贝叶斯概率水文预报研究进展与展望[J]. 水利学报, 2019, 50(12): 1467-1478. [22] 沈叶琴. 金华市生态安全研究[D]. 杭州: 浙江师范大学, 2006. [23] 王中根, 刘昌明, 黄友波. SWAT模型的原理、结构及应用研究[J]. 地理科学进展, 2003, 22(1): 79-86. [24] MUKUNDAN R, PRADHANANG S M, SCHNEIDERMAN E M, et al. Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA[J]. Geomorphology, 2013, 183(2): 110-119. [25] GESSESSE B, BEWKET W, BRÄUNING A. Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia[J]. Land Degradation & Development, 2015, 26(7): 711-724. [26] GUNGOR K, KARAKAYA N, EVRENDILEK F, et al. Spatiotemporal modeling of watershed nutrient transport dynamics: Implications for eutrophication abatement[J]. Ecological Informatics, 2016, 34(7): 52-69. [27] GÜNTHER F, VELTHUIZEN H V, SHAH M, et al. Global AgroEcological Assessment for Agriculture[C]//Rome: Food & Agriculture Organization of the United Nations. 2010. [28] MORIAS D N, ARNOLD J G, VAN LIEW M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 885-900. doi: 10.13031/2013.23153 [29] ABBASPOUR K C, JOHNSON C A, VAN GENUCHTEN M T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure[J]. Vadose Zone Journal, 2004, 3(4): 1340-1352. doi: 10.2136/vzj2004.1340 [30] GIRI S, NEJADHASHEMI A P, WOZNICKI S A. Evaluation of targeting meyhods for implementation of best management practices in the Saginaw River Watershed[J]. Journal of Environmental Management, 2012, 103: 24-40. [31] 马梦蝶. 广利河流域非点源污染模拟及不确定性分析[D]. 青岛: 山东大学, 2019.