-
党的十八大以来,我国生态环境的改善初见成效、稳中向好,但部分区域形势仍然十分严峻[1]。义乌市是世界闻名的“小商品之都”、全球最大的小商品集散中心[2]。义乌市还是我国第一批新型城镇化综合试点地区。在经济发展的背后,产业与社会对水资源的需求逐步提高。全面提升水资源安全保障和水环境保护能力是义乌市生态环境保护工作的重心。
义乌市原本河网水系发达,水量充沛。但随着该市经济的高速发展,用水量急剧增大,水污染日趋严重。2013年11月29日,浙江省委十三届四中全会提出“五水共治”这一项重大战略政策,遵循协同理念治水,创新运用“五位一体”协同水管理模式、“河长制”与多样化的公众参与途径,实现了水环境质量的全面好转[3-4]。
本文系统总结义乌“五水共治1.0”(2013—2020年)实施以来取得的成果及工作中的难点与挑战,明确了水环境质量持续改善与水系统功能修复的核心目标,进而提出水环境与水资源可持续发展模式(“五水共治2.0”)的构建设想,提出为实现该目标应采取的举措,以及具体的工程布局,以期为义乌市“五水共治”工作的进一步推动提供参考。
基于水资源可持续发展与水生态文明建设的义乌“五水共治”新模式
Sustainable development of water resources and construction of water ecological civilization: A new model of “five water treatment” in Yiwu City
-
摘要: 义乌市的“五水共治”行动已开展了8年。尽管耗氧物质已得到全面管控,但仍面临水质型饮用水短缺和水系统功能受损的挑战。为助力该市经济与生态环境保护的协调发展,中国科学院生态环境研究中心(义乌)长三角中心提出了水生态可持续发展的战略举措:建议义乌市以生态资源经济化与经济发展生态化的发展模式,实行多水源开发与风险防控;将初期雨水治理、雨污分流处置、管网系统优化、水质质量保障、内外污染防控与生态环境品质提升作为工作重心;增设智慧化管理平台保障监测与控制;实行国内生产总值(GDP)和生态系统生产总值(GEP)双核算制度。以上举措有望协助义乌市走出一条集约化发展模式下的绿色流域构建道路。Abstract: The “five water treatment” of Yiwu City has gone through eight years. Although the oxygen consumption substances have been fully controlled (the “five water treatment” action), challenges still remain because of drinking water shortage and impaired water system functions. In order to promote the coordinated development between economic growth and ecological environment protection in Yiwu City, the Yangtze River Delta Branch (Yiwu), which is affiliated with Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, has put forward strategies for sustainable development of water ecology. The strategies are: 1) the development in Yiwu city should be according to the mode of economization of ecological resources and ecologicalization of economic development; 2) implement multi-water-source development and risk management; 3) focus on the in-cipient rainwater treatment, rainwater/sewage separation and disposal, pipe network system optimization, water quality assurance, internal and external pollution prevention and control as well as ecological environment quality improvement; 4) employ intelligent management platforms to ensure pollution monitoring and control; and 5) implement the double checking system for both Gross Domestic Product (GDP) and Gross Ecosystem Product (GEP). The implementation of the above strategies should the establishment of a green road for restoring the black and odorous rivers under intensive development to resume their clean stage.
-
表 1 水源地保护与水质提升工程建议
Table 1. Water source protection and water quality improvement project planning
序号 工程名称 主要目标 1 上游农村污水管网评估 构建适合岩口区域的生活污水收集治理和资源化利用模式,完善渗滤液“收集—处置—达标排放”系统 2 农业面源多级屏障体系 建“农田排水沟—沟渠湿地—滞留回用塘/退耕还草/过滤草沟—功能湿地”多级屏障技术体系,实现区域面源污染源头消减和过程控制[14] 3 岩口水库生态治理 在岩口上游构建流域梯级生态水系格局,针对黄山溪、斯何溪、金傅宅溪和溪华溪4条主要入库溪流的关键区域进行河道生态结构优化 4 智慧化平台构建与保护区优化 把保护区划分为库区、入库支流和陆域3个部分,在入库关键节点处设置水质和水量的实时在线监测设备,优化与保障库区内水质 表 2 初雨控制与关键区域低影响开发工程建议
Table 2. Initial rainfall control and low impact development project planning in key areas
序号 工程名称 主要目标 1 雨污分流与雨水
资源利用评估对已完成的雨污分流区进行效果评估,对城市不同功能及开发地块的雨水资源潜力评估,提出雨水径流污染与资源化协同的管控和利用模式 2 面源污染风险与
湖周生态保护评估影响城市面源污染的地表沉积物累积状况和综合径流产生能力,在湖周建设开发区设计相应海绵设施的类型、面积以及布局,制定分期流域水污染防治工程方案[15] 表 3 管网排查与污水系统优化工程建议
Table 3. Pipeline network investigation and sewage system optimization project planning
序号 工程名称 主要目标 1 管网普查优化与数字
化监控对义乌市地下管网系统进行全面普查及优化改造,构建全市地下管网GIS系统,建立数字化管网新模式 2 风险污染物管控与
城市饮用水应急保障开展全流域风险污染物监测与评估工作,构建城市饮用水应急保障体系,建设双江水利枢纽再生水
应急水厂3 污水收集与再生处理 引入新型污水处理技术,形成“厂—河—网”一体的污水收集与低成本、灰绿结合的村镇污水基础设施建设与运管技术,重构污水处理厂水质提升与再生利用技术路径,实现城乡水系统协同优化与精准管控 表 4 流域典型水系生态修复工程建议
Table 4. Ecological restoration project planning of typical water systems in the basin
序号 工程名称 主要目标 1 污染源调查评估 对流域内典型水系分区进行污染源调查,并对点源、面源污染源污染负荷进行量化核算,对水系污染现状和降解能力现状进行评估 2 连通水系与生态修复 全力打造“百川东到海、路路皆通达”的畅通格局,构建“沉水植物—浮水植物—水生动物多层级水生态系统”水域空间、“复合式滨河缓冲净化带”陆域空间 3 智慧化平台搭建 在流域典型水系关键节点设置水质和水量的实时在线监测设备,实现水库管理相关部门对入库水体的综合管控,保障库区内水质安全 表 5 双江水利枢纽水资源保障与景观综合提升工程建议
Table 5. Water resources guarantee and landscape comprehensive improvement project planning of Shuangjiang water control project
序号 工程名称 主要目标 1 构建湖周生态保护圈层与
库区净化系统在湖周采用海绵城市建设手段,设计相应海绵设施的类型、面积以及布局,同时构建库区湿地—缓冲带净化系统,降低库区外源污染负荷的输入 2 淤泥疏浚及资源化
利用工程进行底泥疏挖、底泥脱水、余水处理及底泥的资源化利用等综合淤泥疏浚与利用综合方案设计 3 构建水质监测预警智慧决策
平台与应急处置针对库区内、外源污染负荷,打造环境立体监测网络,建立环境智慧决策系统和针对极端水质情况下的应急处置—多功能澄清塘+陶粒坝应急处置工程 -
[1] LI X. Research on the construction of ecological civilization based on marxist philosophy[J]. International Journal of Social Sciences in Universities, 2019, 2(3): 9-11. [2] 李雪, 李燕玉. 义乌小商品市场的现状及发展策略[J]. 现代营销(下旬刊), 2020(4): 114-115. [3] 许光建, 卢允子. 论“五水共治”的治理经验与未来: 基于协同治理理论的视角[J]. 行政管理改革, 2019(2): 33-40. [4] 单盈. 软法视野下“五水共治”多元共治体系构建的法制保障研究: 以金华市为切入点[J]. 理论观察, 2019(12): 95-98. [5] 赵鑫. 市政工程排水管网施工问题及质量控制措施分析[J]. 科技经济导刊, 2020, 28(17): 51. [6] CAO Y S, TANG J G, HENZE M, et al. The leakage of sewer systems and the impact on the 'black and odorous water bodies' and WWTPs in China[J]. Water Science & Technology, 2019, 79(2): 334-341. [7] 白建锋, 刘永丽. 水资源可持续发展和雨水的集蓄利用[J]. 区域治理, 2020(2): 112-114. [8] ODONKOR S T, MAHAMI T. Escherichia coli as a tool for disease risk assessment of drinking water sources[J]. International Journal of Microbiology, 2020, 2020: 2534130. [9] REZA M T I A, TAHMINA S M, ANWAR Z, et al. Drinking appraisal of coastal groundwater in Bangladesh: An approach of multi-hazards towards water security and health safety[J]. Chemosphere, 2020, 255: 126933. doi: 10.1016/j.chemosphere.2020.126933 [10] ERKAN H S, ENGIN G O, INCE M, et al. Effect of carbon to nitrogen ratio of feed wastewater and sludge retention time on activated sludge in a submerged membrane bioreactor[J]. Environmental Science and Pollution Research, 2016, 23(11): 10742-10752. doi: 10.1007/s11356-016-6215-2 [11] CRISTINA R, JULIETTE T R, DAMIEN B, et al. Invasive aquatic plants as ecosystem engineers in an oligo-mesotrophic shallow lake[J]. Frontiers in Plant Science, 2018, 9: 1781. doi: 10.3389/fpls.2018.01781 [12] ULLO S L, SINHA G R. Advances in smart environment monitoring systems using IoT and sensors[J]. Sensors (Basel, Switzerland), 2020, 20: 3113. doi: 10.3390/s20113113 [13] JIANG Z B, DU P, LIAO Y B, et al. Oyster farming control on phytoplankton bloom promoted by thermal discharge from a power plant in a eutrophic, semi-enclosed bay[J]. Water Research, 2019, 159: 1-9. doi: 10.1016/j.watres.2019.04.023 [14] 杨林章,施卫明,薛利红,等. 农村面源污染治理的“4R”理论与工程实践: 总体思路与“4R”治理技术[J]. 农业环境科学学报, 2013, 32(1): 1-8. [15] XIANG C Y, LIU J H, SHAO W W, et al. Sponge city construction in China: Policy and implementation experiences[J]. Water Policy, 2019, 21(1): 19-37. doi: 10.2166/wp.2018.021 [16] 张宁, 陈延鑫. 智慧水务市场嵌入中的利益主体参与意愿及其影响因素: 以浙江“五水共治”为例[J]. 统计与信息论坛, 2019, 34(8): 121-128. [17] 常杪, 杨亮, 陈青, 等. 我国环保产业园的发展与新时期面临的挑战[J]. 中国环保产业, 2020(6): 12-17. [18] 高敏雪. 生态系统生产总值的内涵、核算框架与实施条件: 统计视角下的设计与论证[J]. 生态学报, 2020, 40(2): 402-415.