-
进入环境的微塑料会导致生物链破坏等一系列环境问题,严重影响生态系统的稳定性和人类健康。微塑料(microplastics,MPs),通常指粒径小于5 mm的塑料颗粒,是近年来新兴环境污染物研究的热点对象之一[1]。虽然现场研究中记录的MPs的尺寸范围相对较广,但目前大多数实验室研究通常在较小的尺寸范围内使用纳/微塑料(N/MPs),介于纳米和亚微米之间[2-4]。即使在小范围内,获得的N/MPs的生态毒理学数据也显示出一些差异。一般认为,粒径越小的N/MPs,其生物利用度越高,保留时间越长,对生物群的毒性越大[5]。
由于微纳米塑料污染是环境领域的一个新兴问题,许多基础研究问题仍有待解决,现有的研究大多局限于微塑料在生物体内的积累,在河口区采集的23%野生海鲶和7.9%的石首鱼体内均检测到微塑料[6-7]。但有关微塑料对微生物生态影响的研究还较少,已有研究表明,塑料在海洋环境里能作为载体供微生物附着生长,由于塑料的疏水性,其表面可有利于微生物生物膜的形成[8]。MPs影响微生物群落的结构和功能,进而导致MPs的物理和化学性质的改变。NEGORO[9]解析了由壤霉菌属nylC编码的尼龙寡聚物水解酶的晶体结构并证明四倍体突变体能水解多聚尼龙,但尼龙水解酶是否能在合适的时间段内大量分解PA还需证明。YANG等[10]发现聚苯乙烯饲喂的黄粉虫幼虫粪便中PS长链发生解聚,证明了肠道微生物对PS分解起主要作用,分离出一株能以PS为唯一碳源的微小杆菌Exiguobacterium sp.YT2,在液体培养60 d能降解7.4%±0.4%的聚苯乙烯。然而,污水处理过程中微塑料对好氧反硝化脱氮效果的研究还很少,其对好氧反硝化污泥的影响机制尚待探讨。因此,本研究以反硝化污泥作为接种源,富集筛选好氧反硝化菌群,以60 nm聚苯乙烯(PS)和37~74 μm聚酰胺(PA)作为模型微塑料污染物,旨在研究微塑料对好氧反硝化菌群脱氮特性及反硝化相关基因表达的影响,为好氧反硝化菌在污水处理厂中的应用提供理论依据。
典型微塑料对好氧反硝化菌群脱氮特性及反硝化相关基因的影响
Effects of typical microplastics on the denitrification characteristics and denitrification related genes of aerobic denitrifying bacteria
-
摘要: 随着塑料排放问题日益严重,造成污水处理厂中存在大量的微塑料,而微塑料对好氧反硝化菌的影响机制尚不清楚。基于SBR富集筛选好氧反硝化菌群,并深入研究了水体中典型微塑料(PS、PA)对好氧反硝化菌群的影响,同时从菌群胞外多聚物含量、比耗氧速率、微生物群落结构变化以及反硝化基因(napA,nirS,cnorB,nosZ基因)丰度变化等多个角度揭示了其可能的影响机制。结果表明:典型微塑料PS、PA的胁迫均会对好氧反硝化菌群的脱氮性能产生抑制作用,产生一定量亚硝酸盐氮的积累。高通量测序分析结果揭示了功能性反硝化降解微生物群落的丰度和种类变化是SBR脱氮性能变化的主要原因。以上研究成果可为将好氧反硝化菌应用于接纳工业废水的城镇污水处理厂中提供参考。Abstract: In recent years, with the increasingly serious problem of plastic discharge, there are a large number of microplastics in sewage treatment plants, and the influence mechanism of microplastics on aerobic denitrifying bacteria is still unclear. In this study, the aerobic denitrifying bacteria were screened and enriched based on SBR, and the influences of typical micro plastic(PS, PA) in water body on aerobic denitrifying bacteria were further investigated. At the same time, the possible influence mechanism was revealed from the multiple aspects of bacteria extracellular polymer content, specific oxygen uptake rate and changes in microbial community structure and denitrification genes (napA, nirS, cnorB, nosZ genes) abundance. The results showed that the stress of PS and PA could inhibit the denitrifying performance of aerobic denitrifying bacteria and cause the accumulation of a certain amount of nitrite. High-throughput sequencing revealed that the changes in the abundance and species of functional denitrifying microorganisms were the main reasons for the changes in the denitrification performance of SBR. The results provide an important theoretical basis for the application of aerobic denitrifying bacteria in urban wastewater treatment plants receiving industrial wastewater.
-
表 1 PCR引物序列
Table 1. PCR primers sequence
基因名称 引物名称 引物序列 (5'~3') 16S rRNA F27 AGAGTTTGATCMTGGCTCAG R1492 TTGGYTACCTTGTTACGACT V3 region of16S rRNA F341 CCTACGGGAGGCAGCAG R518 ATTACCGCGGCTGCTGG napA napA Z3F CGCGAACAAGCTGATGAAGG napA Z3R AAGATCATCGGGATGTCGGC nirS nirS cd3aF GTSAACGTSAAGGARACSGG nirS R3cd GASTTCGGRTGSGTCTTGA cnorB cnorB Z1F CGTCGGTCAGATCCTCTTCG cnorB Z1R GCGATGATCACGTAGAGCCA nosZ nosZ 1527F CGCTGTTCHTCGACAGYCA nosZ 1773R CGCTGTTCHTCGACAGYCA 表 2 SBR系统EPS及SMP浓度比较
Table 2. Comparison of EPS and SMP concentrations in SBR system
时间/d 成分 EPS/(mg·g−1) SMP/(mg·g−1) M0 M1 M2 M0 M1 M2 10 糖类 0.001 7 0 0.001 8 0.296 0.223 0.298 蛋白质 0.232 0.175 0.289 0.235 0.175 0.268 50 糖类 0.002 0.001 0.002 0.098 0.096 0.184 蛋白质 0.726 0.640 1.199 0.700 0.637 1.164 表 3 细菌群落 α-多样性
Table 3. α-diversity of microbial community
样品 OTU Shannon指数 ACE指数 Chao1指数 覆盖率/% Simpson指数 接种污泥 1 292 4.712 194 1 311.596 1 297.283 99.9 0.037 727 富集菌群 940 3.201 481 1 146.133 1 071.852 99.8 0.100 441 空白组 220 2.068 701 233.334 2 228.433 3 99.9 0.205 809 加PS 207 2.317 935 225.290 1 226.772 7 99.9 0.164 635 加PA 225 2.442 192 241.522 1 256.909 1 99.9 0.181 633 -
[1] ANDRADY A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605. doi: 10.1016/j.marpolbul.2011.05.030 [2] EMILY E B, ALISTAIR B A B. Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps[J]. Environmental Toxicology and Chemistry, 2018, 37(11): 2776-2796. doi: 10.1002/etc.4268 [3] TRIEBSKORN R, BRAUNBECK T, GRUMMT T, et al. Relevance of nano- and microplastics for freshwater ecosystems: A critical review[J]. Trends in Analytical Chemistry, 2019, 110: 375-392. doi: 10.1016/j.trac.2018.11.023 [4] DE S, LUIS C, OLIVEIRA M, et al. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future?[J]. Science of the Total Environment, 2018, 645: 1029-1039. doi: 10.1016/j.scitotenv.2018.07.207 [5] RIST S, BAUN A, HARTMANN N B. Ingestion of micro- and nanoplastics in daphnia magna - quantification of body burdens and assessment of feeding rates and reproduction[J]. Environmental Pollution, 2017, 228: 398-407. doi: 10.1016/j.envpol.2017.05.048 [6] DANTAS D V, BARLETTA M, COSTA M F. The seasonal and spatial patterns of ingestion of polyfilament nylon fragments by estuarine drums[J]. Environmental Science and Pollution Reasearch, 2011, 19(2): 600-606. [7] POSSATTO F E, BARLETTA M, COSTA M F, et al. Plastic debris ingestion by marine catfish: An unexpected fisheries impact[J]. Marine Pollution Bulletin, 2011, 62(5): 1098-1102. doi: 10.1016/j.marpolbul.2011.01.036 [8] GOLDSTEIN M C, ROSENBERG M, CHENG L. Increased oceanic microplastic debris enhances oposition in an endemic pelagic insect[J]. Biology Letters, 2012, 8(5): 817-820. doi: 10.1098/rsbl.2012.0298 [9] NEGORO S. Biodegration of nylon oligometers[J]. Applied Microbiology and Biotechnology, 2000, 54(4): 461-466. doi: 10.1007/s002530000434 [10] YANG Y, YANG J, WU W M, et al. Biodegration and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests[J]. Environmental Science & Technology, 2015, 49(20): 12080-12086. [11] 龙腾锐, 李金印, 龙向宇, 等. 超声波提取活性污泥胞外聚合物的研究[J]. 环境化学, 2008, 27(3): 310-313. doi: 10.3321/j.issn:0254-6108.2008.03.007 [12] YAO J, PAN Y Q, DING M, et al. Meta-analysis shows dopamine receptor D1 gene polymorphism is associated with bipolar disorder but not with schizophrenia[J]. Psychiatry Research, 2013, 210(3): 1324-1325. doi: 10.1016/j.psychres.2013.08.031 [13] CORSTJENS P, MUYZER G. Phylogenetic analysis of the metal-oxidizing bacteria leptothrix discophora and sphaerotilus natans using 16S-rDNA sequencing data[J]. Systematic and Applied Microbiology, 1993, 16(2): 219-223. doi: 10.1016/S0723-2020(11)80471-6 [14] 徐富强, 桂梦瑶, 杜俊逸, 等. 典型工业污染物对好氧反硝化菌群脱氮性能及群落结构的影响[J]. 环境工程学报, 2019, 13(10): 2442-2450. doi: 10.12030/j.cjee.201812007 [15] THROBACK I, ENWALL K, JARVIS A, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 2004, 49(3): 401-417. doi: 10.1016/j.femsec.2004.04.011 [16] 国家环境保护总局. 水质硝酸盐氮的测定 紫外分光光度法(试行): HJ/T 346-2007[S]. 北京: 中国环境科学出版社, 2007. [17] 国家环境保护部. 水质氨氮的测定 纳氏试剂分光光度法: HJ 535-2009[S]. 北京: 中国环境科学出版社, 2010. [18] 国家环境保护局. 水质亚硝酸盐氮的测定 分光光度法: GB 7493-1987[S]. 北京: 中国标准出版社, 1987. [19] 王孝平, 邢树礼. 考马斯亮蓝法测定蛋白含量的研究[J]. 天津化工, 2009, 23(3): 40-42. doi: 10.3969/j.issn.1008-1267.2009.03.016 [20] 姜琼, 谢妤. 苯酚-硫酸法测定多糖方法的改进[J]. 江苏农业科学, 2013, 41(12): 316-318. doi: 10.3969/j.issn.1002-1302.2013.12.114 [21] 杨墨, 刘乾亮, 吕东伟, 等. 低温异养硝化-好氧反硝化菌筛选及其脱氮特性[J]. 中国给水排水, 2019, 35(23): 100-104. [22] 何嘉欣, 黄少斌, 周少锋. 玉米叶水解液作为好氧反硝化的补充碳源分析[J]. 环境工程学报, 2017, 11(5): 2684-2691. doi: 10.12030/j.cjee.201601180 [23] 张泽宇, 王建芳, 齐泽坤, 等. 不同调控策略对CANON工艺快速适应氨氮浓度提升的影响[J]. 环境工程学报, 2019, 13(8): 2004-2014. doi: 10.12030/j.cjee.201812154 [24] 孙晓莹, 张轶凡, 聂英进, 等. 活性污泥比耗氧速率的测定及其在污水处理厂的应用[J]. 天津建设科技, 2009, 19(6): 56-59. doi: 10.3969/j.issn.1008-3197.2009.06.018 [25] 朱颖楠, 王旭, 王瑾丰, 等. 外源群体感应-好氧反硝化菌强化生物膜脱氮研究[J]. 环境科学学报, 2019, 39(10): 3225-3237. [26] 周晓华, 潘杨, 陈茜茜, 等. 污泥转移SBR工艺污泥膨胀及恢复过程中EPS的动态变化[J]. 环境工程学报, 2016, 10(10): 5643-5647. doi: 10.12030/j.cjee.201504244 [27] 李慧, 田禹, 苏欣颖, 等. MFC-MBR耦合系统中SMP与EPS特性的研究[J]. 中国环境科学, 2013, 33(1): 49-55. doi: 10.3969/j.issn.1000-6923.2013.01.007 [28] 徐文迪, 常沙, 明铁山, 等. 基于硫酸根自由基( ${\rm{SO}}_4^{2-} \cdot$ )的污泥预处理技术[J]. 环境工程学报, 2018, 12(5): 1528-1535. doi: 10.12030/j.cjee.201709069[29] LIU X Y, SHU Z F, SUN D Z, et al. Heterotrophic nitrifiers dominate reactors treating incineration leachate with high free ammonia concentrations[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15040-15049. [30] TIAN M, ZHAO F Q, SHEN X, et al. The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using illumina sequencing[J]. Journal of Environmental Sciences, 2015, 35: 181-190. doi: 10.1016/j.jes.2014.12.027 [31] ZHOU T, WANG L, DU Y L, et al. Rhizosphere soil bacterial community composition in soybean genotypes and feedback to soil availability[J]. Journal of Integrative Agriculture, 2019, 18(10): 2230-2241. doi: 10.1016/S2095-3119(18)62115-X [32] HUANG J L, WANG H H, ALAM F, et al. Granulation of halophilic sludge inoculated with estuarine sediments for saline wastewater treatment[J]. Science of the Total Environment, 2019, 682: 532-540. doi: 10.1016/j.scitotenv.2019.05.197 [33] 张艺冉, 李再兴, 孙悦, 等. 石家庄市春季景观水体nirS型反硝化细菌群落特征分析[J]. 环境科学, 2019, 40(7): 3295-3303. [34] 姜超, 隋倩雯, 陈梅雪, 等. 实时控制序批式膜生物反应器处理养猪废水的短程硝化[J]. 环境工程学报, 2017, 11(11): 5868-5876. doi: 10.12030/j.cjee.201604195 [35] 雷静, 年夫喜, 冯国栋, 等. 富营养化水体清淤后的微生物脱氮技术应用[J]. 环境工程学报, 2016, 10(7): 3949-3955. doi: 10.12030/j.cjee.201501236