[1] ANDRADY A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605. doi: 10.1016/j.marpolbul.2011.05.030
[2] EMILY E B, ALISTAIR B A B. Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps[J]. Environmental Toxicology and Chemistry, 2018, 37(11): 2776-2796. doi: 10.1002/etc.4268
[3] TRIEBSKORN R, BRAUNBECK T, GRUMMT T, et al. Relevance of nano- and microplastics for freshwater ecosystems: A critical review[J]. Trends in Analytical Chemistry, 2019, 110: 375-392. doi: 10.1016/j.trac.2018.11.023
[4] DE S, LUIS C, OLIVEIRA M, et al. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future?[J]. Science of the Total Environment, 2018, 645: 1029-1039. doi: 10.1016/j.scitotenv.2018.07.207
[5] RIST S, BAUN A, HARTMANN N B. Ingestion of micro- and nanoplastics in daphnia magna - quantification of body burdens and assessment of feeding rates and reproduction[J]. Environmental Pollution, 2017, 228: 398-407. doi: 10.1016/j.envpol.2017.05.048
[6] DANTAS D V, BARLETTA M, COSTA M F. The seasonal and spatial patterns of ingestion of polyfilament nylon fragments by estuarine drums[J]. Environmental Science and Pollution Reasearch, 2011, 19(2): 600-606.
[7] POSSATTO F E, BARLETTA M, COSTA M F, et al. Plastic debris ingestion by marine catfish: An unexpected fisheries impact[J]. Marine Pollution Bulletin, 2011, 62(5): 1098-1102. doi: 10.1016/j.marpolbul.2011.01.036
[8] GOLDSTEIN M C, ROSENBERG M, CHENG L. Increased oceanic microplastic debris enhances oposition in an endemic pelagic insect[J]. Biology Letters, 2012, 8(5): 817-820. doi: 10.1098/rsbl.2012.0298
[9] NEGORO S. Biodegration of nylon oligometers[J]. Applied Microbiology and Biotechnology, 2000, 54(4): 461-466. doi: 10.1007/s002530000434
[10] YANG Y, YANG J, WU W M, et al. Biodegration and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests[J]. Environmental Science & Technology, 2015, 49(20): 12080-12086.
[11] 龙腾锐, 李金印, 龙向宇, 等. 超声波提取活性污泥胞外聚合物的研究[J]. 环境化学, 2008, 27(3): 310-313. doi: 10.3321/j.issn:0254-6108.2008.03.007
[12] YAO J, PAN Y Q, DING M, et al. Meta-analysis shows dopamine receptor D1 gene polymorphism is associated with bipolar disorder but not with schizophrenia[J]. Psychiatry Research, 2013, 210(3): 1324-1325. doi: 10.1016/j.psychres.2013.08.031
[13] CORSTJENS P, MUYZER G. Phylogenetic analysis of the metal-oxidizing bacteria leptothrix discophora and sphaerotilus natans using 16S-rDNA sequencing data[J]. Systematic and Applied Microbiology, 1993, 16(2): 219-223. doi: 10.1016/S0723-2020(11)80471-6
[14] 徐富强, 桂梦瑶, 杜俊逸, 等. 典型工业污染物对好氧反硝化菌群脱氮性能及群落结构的影响[J]. 环境工程学报, 2019, 13(10): 2442-2450. doi: 10.12030/j.cjee.201812007
[15] THROBACK I, ENWALL K, JARVIS A, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 2004, 49(3): 401-417. doi: 10.1016/j.femsec.2004.04.011
[16] 国家环境保护总局. 水质硝酸盐氮的测定 紫外分光光度法(试行): HJ/T 346-2007[S]. 北京: 中国环境科学出版社, 2007.
[17] 国家环境保护部. 水质氨氮的测定 纳氏试剂分光光度法: HJ 535-2009[S]. 北京: 中国环境科学出版社, 2010.
[18] 国家环境保护局. 水质亚硝酸盐氮的测定 分光光度法: GB 7493-1987[S]. 北京: 中国标准出版社, 1987.
[19] 王孝平, 邢树礼. 考马斯亮蓝法测定蛋白含量的研究[J]. 天津化工, 2009, 23(3): 40-42. doi: 10.3969/j.issn.1008-1267.2009.03.016
[20] 姜琼, 谢妤. 苯酚-硫酸法测定多糖方法的改进[J]. 江苏农业科学, 2013, 41(12): 316-318. doi: 10.3969/j.issn.1002-1302.2013.12.114
[21] 杨墨, 刘乾亮, 吕东伟, 等. 低温异养硝化-好氧反硝化菌筛选及其脱氮特性[J]. 中国给水排水, 2019, 35(23): 100-104.
[22] 何嘉欣, 黄少斌, 周少锋. 玉米叶水解液作为好氧反硝化的补充碳源分析[J]. 环境工程学报, 2017, 11(5): 2684-2691. doi: 10.12030/j.cjee.201601180
[23] 张泽宇, 王建芳, 齐泽坤, 等. 不同调控策略对CANON工艺快速适应氨氮浓度提升的影响[J]. 环境工程学报, 2019, 13(8): 2004-2014. doi: 10.12030/j.cjee.201812154
[24] 孙晓莹, 张轶凡, 聂英进, 等. 活性污泥比耗氧速率的测定及其在污水处理厂的应用[J]. 天津建设科技, 2009, 19(6): 56-59. doi: 10.3969/j.issn.1008-3197.2009.06.018
[25] 朱颖楠, 王旭, 王瑾丰, 等. 外源群体感应-好氧反硝化菌强化生物膜脱氮研究[J]. 环境科学学报, 2019, 39(10): 3225-3237.
[26] 周晓华, 潘杨, 陈茜茜, 等. 污泥转移SBR工艺污泥膨胀及恢复过程中EPS的动态变化[J]. 环境工程学报, 2016, 10(10): 5643-5647. doi: 10.12030/j.cjee.201504244
[27] 李慧, 田禹, 苏欣颖, 等. MFC-MBR耦合系统中SMP与EPS特性的研究[J]. 中国环境科学, 2013, 33(1): 49-55. doi: 10.3969/j.issn.1000-6923.2013.01.007
[28] 徐文迪, 常沙, 明铁山, 等. 基于硫酸根自由基( ${\rm{SO}}_4^{2-} \cdot$)的污泥预处理技术[J]. 环境工程学报, 2018, 12(5): 1528-1535. doi: 10.12030/j.cjee.201709069
[29] LIU X Y, SHU Z F, SUN D Z, et al. Heterotrophic nitrifiers dominate reactors treating incineration leachate with high free ammonia concentrations[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15040-15049.
[30] TIAN M, ZHAO F Q, SHEN X, et al. The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using illumina sequencing[J]. Journal of Environmental Sciences, 2015, 35: 181-190. doi: 10.1016/j.jes.2014.12.027
[31] ZHOU T, WANG L, DU Y L, et al. Rhizosphere soil bacterial community composition in soybean genotypes and feedback to soil availability[J]. Journal of Integrative Agriculture, 2019, 18(10): 2230-2241. doi: 10.1016/S2095-3119(18)62115-X
[32] HUANG J L, WANG H H, ALAM F, et al. Granulation of halophilic sludge inoculated with estuarine sediments for saline wastewater treatment[J]. Science of the Total Environment, 2019, 682: 532-540. doi: 10.1016/j.scitotenv.2019.05.197
[33] 张艺冉, 李再兴, 孙悦, 等. 石家庄市春季景观水体nirS型反硝化细菌群落特征分析[J]. 环境科学, 2019, 40(7): 3295-3303.
[34] 姜超, 隋倩雯, 陈梅雪, 等. 实时控制序批式膜生物反应器处理养猪废水的短程硝化[J]. 环境工程学报, 2017, 11(11): 5868-5876. doi: 10.12030/j.cjee.201604195
[35] 雷静, 年夫喜, 冯国栋, 等. 富营养化水体清淤后的微生物脱氮技术应用[J]. 环境工程学报, 2016, 10(7): 3949-3955. doi: 10.12030/j.cjee.201501236