-
在我国西南地区,岩溶地下水资源是当地社会和经济发展的基石,更是生态文明建设和可持续发展的重要保障[1]。然而,由于岩溶发育强烈,且地表缺少足够厚度的土壤防护层,地表污染物在缺少防渗条件下容易直接侵入含水层导致地下水污染[2]。随着我国石油产业的发展,在石油的开采、运输、储存、加工和使用过程中不可避免会发生泄漏,从而引起地下水遭受石油芳香烃有机污染。其典型污染组分苯、甲苯、乙苯和二甲苯(benzene, toluene, ethyl benzene, xylenes,简称BTEX)具有很强的挥发性、迁移性和致癌性[3-4],一旦发生油品泄漏,会严重危及地下水环境安全。
目前,原位化学氧化(in situ chemical oxidation, ISCO)技术被认为是修复地下水BTEX污染的有效途径[5],其原理是将强氧化剂投注到受污染的地下水中,使之与有机污染物发生氧化反应,促进污染物氧化分解并最终矿化为CO2和H2O[6]。由于过硫酸盐(persulfate, PS)具有氧化还原电位高、在常态下比芬顿试剂和臭氧等氧化剂更稳定、且易溶于水等特点[7-9],常被用来氧化芳香烃和其他石油烃化合物[10-11]。然而,对于广泛分布的岩溶地下河,利用PS修复石油芳香烃污染的研究报道很少见,因此,其应用潜力具有不确定性。为更好地认识这个问题,本研究利用碳酸盐岩管道模型,在实验室开展人工流条件下PS修复汽油BTEX污染的研究,旨在认识并评价岩溶地下河管道中PS稳定性和化学氧化修复效果,且分析其主要的影响因素,可为实际场地修复BTEX污染提供参考。
过硫酸盐在岩溶管道地下水中的稳定性及其对苯系物的去除效果
Stability of persulfate in karst conduit groundwater and its removal effect of aromatics
-
摘要: 原位化学氧化(in situ chemical oxidation, ISCO)是一种高效便捷的去除地下水有机污染物的技术,相比于多孔介质,岩溶地下河中ISCO技术应用还未见报道。为了更好地认识ISCO技术在岩溶地下河石油污染修复中应用的可行性,使用过硫酸盐(persulfate, PS)作为化学氧化剂,在实验室利用碳酸盐岩管道模型,探查了不同浓度的过硫酸盐在岩溶管道内的迁移能力和稳定性,评价了过硫酸盐对汽油苯系物组分(包括苯、甲苯、乙苯和二甲苯)的去除效果。结果表明:在管道流量为120 mL·h−1的水动力条件下,过硫酸盐在未污染岩溶管道中具有较好的稳定性和较强的迁移能力;在过硫酸盐投注浓度为21 g·L−1、投注流量为15 mL·h−1情况下,岩溶管道汽油苯系物的去除速率为4.1 mg·h−1,PS消耗速率为86.2 mg·h−1;流水状态下的去除效果比静水状态下的效果好。同时,碳酸盐岩缓冲作用能够抑制化学氧化引起的pH下降,并促进碳酸盐岩溶蚀,使得钙离子含量增大。Abstract: In situ chemical oxidation (ISCO) is an efficient and convenient technology to remove organic pollutants in groundwater. However, compared with porous media, the application of ISCO technology in karst underground rivers has not been reported yet. In order to better understand the feasibility of the application of ISCO technology in karst underground river contaminated by petroleum hydrocarbons, persulfate (PS) was used to investigate its migration ability and stability, and the effect of aromatic hydrocarbons (including benzene, toluene, ethylbenzene and xylene) removal by PS was evaluated with a carbonate conduit model in laboratory. The results showed that PS had good stability and strong migration ability in the uncontaminated karst conduit with the flow rate of 120 mL·h−1. When the concentration of injected persulfate was 21 g·L−1 and the injection flow was 15 mL·h−1, the removal rate of aromatics was 4.1 mg·h−1, and the consumption rate of PS was 86.2 mg·h−1. The removal effect of aromatics by PS in flow-water state was better than that in static-water state. The buffering of carbonate rocks could inhibit the pH decrease caused by chemical oxidation, promote carbonate karst erosion, and increase the content of calcium ion.
-
Key words:
- karst conduit /
- persulfate /
- in situ chemical oxidation /
- aromatics /
- groundwater
-
表 1 实验采用的地下水物理化学特征
Table 1. Physical-chemical characteristics of groundwater used in the experiment
数值 主要离子和溶解氧含量/(mg·L−1) EC/(μS·cm−1) Eh/mV pH ${\rm{NO}}_3^ - $ ${\rm{SO}}_4^{2 - }$ ${\rm{HCO}}_3^ - $ Ca2+ DO 范围 2.6~11.1 5.31~22.25 150~183 45~68 7.6~9.1 271~347 −73.3~−47.4 7.5~8.4 平均值 8.6 11.45 161 58 8.1 322 −62.7 8.0 表 2 PS和荧光素钠的衰减速率常数和半衰期
Table 2. Decay rate constants and half-life of PS and sodium fluorescein
组分 k/h−1 T/h R2 5 g·L−1 PS 0.013 120.9 0.984 4 10 g·L−1 PS 0.012 122.8 0.965 7 20 g·L−1 PS 0.011 124.9 0.905 8 荧光素钠 0.016 115.9 0.986 4 注:T为半衰期;R2为相关系数。 表 3 PS和荧光素钠在管道中迁移的水力特征
Table 3. Hydraulic characteristics of various concentrations PS and sodium fluorescein
组分 回收率/
%平均滞留
时间/d平均迁移
速度/(m·d−1)纵向弥散
系数/(m2·s−1)5 g·L−1 PS 74.6 4.13 0.85 0.47×10−5 10 g·L−1 PS 84.3 3.92 0.96 0.47×10−5 20 g·L−1 PS 74.7 3.17 1.22 0.47×10−5 荧光素钠 91.9 3.48 1.08 0.39×10−5 表 4 主要组分在不同实验时段的质量变化
Table 4. Quality changes of main components in different experimental periods
组分 实验时段/h 进水中质量/mg 出水中质量/mg 质量变化/mg 单位时间内的质量
变化/(mg·h−1)BTEX 0~1 005 8 863.4 6 409.5 −2 453.9 −2.44 1 006~1 449 3 891.2 2 055.2 −1 836.0 −4.14 1 450~2 158 1 177.3* 758.6** −418.7 −0.60 ${{\rm{S}}_{\rm{2}}}{\rm{O}}_{\rm{8}}^{{\rm{2 - }}}$ 1 006~1 449 139 860 101 582.1 −38 277.9 −86.2 1 450~2 158 34 542* 24 578** −9 964 −14.1 ${\rm{SO}}_4^{2 - }$ 0~1 005 1 201.5 1 070.7 −130.8 −0.1 1 006~1 449 314.2 11 651.8 +11 337.6 +25.5 1 450~2 158 2 943.5* 11 310.0** +8 366.5 +11.8 Ca2+ 0~1 005 6 937.9 7 392.5 +454.6 +0.5 1 006~1 449 3 493.4 6 688.3 +3 194.9 +7.2 1 450~2 158 1 882.7* 2 671.9** +789.2 +1.1 注:*表示静水阶段第1 450 h时管道内所含物质的质量;**表示静水阶段第2 158 h管道内所含物质的质量;+ 表示质量增加,−表示质量减少。 -
[1] 卢丽, 王喆, 裴建国, 等. 西南地区典型岩溶地下水系统污染模式[J]. 南水北调与水利科技, 2018, 16(6): 89-96. [2] 杨青, 陈小华, 孙从军, 等. 地下水浅埋区某加油站特征污染物空间分布[J]. 环境工程学报, 2014, 8(1): 98-103. [3] 尹贞, 廖书林, 马强, 等. 化学氧化技术在地下水修复中的应用[J]. 环境工程学报, 2015, 9(10): 4910-4914. [4] BERIRO D J, CAVEM R, WRAGG J, et al. A review of the current state of the art of physiologically-based tests for measuring human dermal in vitro bioavailability of polycyclic aromatic hydrocarbons (PAH) in soil[J]. Journal of Hazardous Materials, 2016, 305: 240-259. doi: 10.1016/j.jhazmat.2015.11.010 [5] XU J L, DU J, LI L, et al. Fast-stimulating bioremediation of macro crude oil in soils using matching Fenton pre-oxidation[J]. Chemosphere, 2020, 252: 126622. doi: 10.1016/j.chemosphere.2020.126622 [6] CHEN Y D, JIANG Y P, ZHU Y N, et al. Fate and transport of ethanol-blended dissolved BTEX hydrocarbons: a quantitative tracing study of a sand tank experiment[J]. Environmental Earth Sciences, 2013, 70(1): 49-56. doi: 10.1007/s12665-012-2102-4 [7] SRA K S, THOMSON N R, BARKER J F. Persistence of persulfate in uncontaminated aquifer materials[J]. Environmental Science and Technology, 2010, 44(8): 3098-3104. doi: 10.1021/es903480k [8] LONG A H, LEI Y, ZHANG H, et al. In situ chemical oxidation of organic contaminated soil and groundwater using activated persulfate process[J]. Progress in Chemistry, 2014, 26(5): 898-908. [9] LIU Y D, ZHANG Y Z, ZHOU A G. A potential novel approach for in situ chemical oxidation based on the combination of persulfate and dithionite[J]. Science of the Total Environment, 2019, 693: 133635. doi: 10.1016/j.scitotenv.2019.133635 [10] USMAN M, CHEEMA S A, FAROOQ M. Heterogeneous Fenton and persulfate oxidation for treatment of landfill leachate: A review supplement[J]. Journal of Cleaner Production, 2020, 256: 120448. doi: 10.1016/j.jclepro.2020.120448 [11] 李永涛, 岳东, 熊鑫高原, 等. 零价铁活化过硫酸钠降解含油废水[J]. 环境工程学报, 2016, 10(8): 4239-4243. [12] 潘勇军, 陈余道, 蒋亚萍, 等. 岩溶地下河入口洞穴固结土对BTEX吸附-解吸研究[J]. 环境科学与技术, 2016, 39(11): 52-57. [13] 迟金磊, 蒋亚萍, 陈余道, 等. 石灰岩含水介质中苯系物(BTEX)生物可降解性判识[J]. 高校地质学报, 2014, 20(3): 476-481. [14] LIANG C J, HUANG C F, MOHANTY N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73(9): 1540-1543. [15] 童奇玲, 蒋亚萍, 陈余道. 运用批实验研究溶解氧对米酒去除硝酸盐的影响[J]. 环境工程, 2017, 35(10): 44-49. [16] 郑民杰. 岩溶管道中苯和甲苯自然衰减与反硝化增强修复实验研究[D]. 桂林: 桂林理工大学, 2017. [17] 陈余道, 程亚平, 王恒, 等. 岩溶地下河管道流和管道结构及参数的定量示踪: 以桂林寨底地下河为例[J]. 水文地质工程地质, 2013, 40(5): 11-15. [18] FIELD M S. The QTRACER2 program for tracer-breakthrough curve analysis for tracer tests in karstic aquifers and other hydrologic systems[M]. Washington: National Center for Environmental Assessment-Washington Office, Office of Research and Development, US Environmental Protection Agency, 2002. [19] AMY L T, MUSHTAQUE A, RICHARD J W, et al. Persulfate activation by naturally occurring trace minerals[J]. Journal of Hazardous Materials, 2011, 196: 153-159. doi: 10.1016/j.jhazmat.2011.09.011 [20] WEN D, DONG Z L, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201. doi: 10.1016/j.apcatb.2016.04.003 [21] TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1): 55-91. doi: 10.1080/10643380802039303 [22] CASSIDY D P, SRIVASTAVA V J, DOMBROWSKI F J, et al. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil[J]. Journal of Hazardous Materials, 2015, 297: 347-355. doi: 10.1016/j.jhazmat.2015.05.030 [23] FANG S C, LO S L. Application of sodium persulfate as the in-situ remediation for groundwater contamination at a gasoline service station[J]. Research Journal of Chemistry and Environment, 2011, 15(2): 280-290. [24] XIA Y, CHENG Y P, LI L Y, et al. A microcosm study on persulfate oxidation combined with enhanced bioremediation to remove dissolved BTEX in gasoline-contaminated groundwater[J]. Biodegradation, 2020, 31(3): 213-222. doi: 10.1007/s10532-020-09904-z [25] LIU H Z, BRUTON T, DOYLE F, et al. In situ chemical oxidation of contaminated groundwater by persulfate: Decomposition by Fe(Ⅲ)-and Mn(Ⅳ)-containing oxides and aquifer materials[J]. Environmental Science & Technology, 2014, 48(17): 10330-10336. [26] WEI Y X, THOMSON N R, ARAVENA R, et al. Infiltration of sulfate to enhance sulfate-reducing biodegradation of petroleum hydrocarbons[J]. Ground Water Monitoring & Remediation, 2018, 38(4): 73-87. [27] 邢广萍, 王清奎, 李亚红. 关于白云石粉调节基质PH值的探讨[J]. 山东林业科技, 2006(4): 19-20. [28] AHMET A, SELIM D, MEHMET E, et al. Removal of sulphate from landfill leachate by crystallization[J]. Environmental Engineering Research, 2019, 24(1): 24-30. [29] SRA K S, THOMSON N R, BARKER J F, et al. Persulfate treatment of dissolved gasoline compounds[J]. Journal of Hazardous, Toxic & Radioactive Waste, 2013, 17(1): 9-15. [30] 白亚林. 过硫酸盐复合氧化体系去除地下水中挥发性石油烃的研究[D]. 北京: 中国石油大学, 2017.