-
汞是一种剧毒重金属,可以存在于大气、水体、土壤及生物体内,会对环境和人群造成巨大危害[1-2]。汞在环境中长期存在且不能被降解,并可以通过食物链被富集,这更会加剧其危害性[3]。汞进入土壤后,会与土壤中的有机质、矿物质、土壤微生物等发生一系列复杂的物理-化学作用,导致其自身形态发生转变,毒性会进一步增强[4-5]。按照迁移能力的不同,土壤中的汞可分为可交换态、碳酸盐结合态、铁锰氧化态、有机结合态和残渣态5种形态。其中,可交换态和碳酸盐结合态迁移性较强,生物可利用性亦较强[6-7]。汞污染土壤稳定化修复就是利用环境矿物材料的表面吸附、离子交换、纳米效应及与生物交互作用等,降低土壤中可交换态和碳酸盐结合态的汞含量,同时提高有机结合态、残渣态等稳定形态汞的含量,从而降低土壤中汞对环境和人体健康的潜在风险[8]。
生物炭是由生物质在缺氧或无氧条件下热解得到的固态产物,具有来源广、比表面积大、孔隙发达、官能团丰富、稳定性强等特点,被广泛应用于农业、环境、养殖及能源等行业[9-10]。影响生物炭性质的因素主要有热解温度、热解时间、升温速率和生物质原料种类等[11]。土壤中施入生物炭,能够增大土壤持水量,增加土壤肥力,进而提高作物产量[12-13]。此外,生物炭对土壤中的重金属离子亦有较好的吸附固定作用,可降低土壤中重金属的迁移性和生物有效性,从而降低其在植物体内富集的风险[12]。生物质炭作为环境功能材料,已经在土壤修复领域引起了广泛关注,利用生物炭修复汞土壤污染的研究也越来越深入[13-21]。
将生物炭进行改性,会强化生物炭的功能,有利于生物炭的高效利用[16-21]。O′CONNOR等[18]发现,用元素硫(S)改性水稻壳生物质炭,可提高生物质炭的Hg2+吸附能力,饱和吸附量可达67.11 mg·g−1;添加5%该改性生物炭,汞污染土壤浸出稳定化率可达99.3%。LIU等[19]发现,Hg2+能够与未改性生物炭中的Cl和S化生物炭中的S结合,使得硫化后的生物炭的除Hg2+效率得到提升。有关氯化锌(ZnCl2)改性生物炭在烟气脱Hg2+方面的研究较多。DUAN等[20]利用ZnCl2活化玉米芯制备生物炭,烟气脱汞率可达95%以上,而且证实了Zn元素和Cl元素均在吸附Hg2+的过程中起作用。HONG等[21]发现,ZnCl2改性生物炭脱除烟气中的Hg0的机理是,在生物炭上生成ZnO并作为催化活性位点,将Hg0氧化为Hg2+,并与H2S生成HgS。
本研究中考察了ZnCl2和单质S改性对玉米秸秆基生物炭稳定Hg2+的能力,并采用正交实验方法优化了ZnCl2和S共改性生物炭的最佳制备条件;同时,探究了ZnCl2和S共改性生物炭对土壤中汞形态的影响,以期为汞污染土壤修复提供参考。
利用氯化锌和硫改性玉米秸秆生物炭稳定汞污染土壤
Preparation of zinc chloride and sulfur modified cornstalk biochar and its stabilization effect on mercury contaminated soil
-
摘要: 以玉米秸秆为原料,氯化锌(ZnCl2)和硫(S)为改性剂,使用限氧热解法制备改性生物炭,并利用正交实验优化改性生物炭的制备条件;以浸出液汞浓度和汞形态含量变化为指标,评价改性玉米秸秆生物炭对汞污染土壤的稳定化效果,并确定了改性生物炭的最佳添加量。结果表明,通过ZnCl2和S的改性可以提高生物炭对土壤中汞的稳定化能力;经改性生物炭处理后,汞污染土壤浸出液中可交换态汞含量降低,有机结合态和残渣态汞含量增加。ZnCl2和S共改性生物炭的稳定化效果显著高于单独的ZnCl2或S改性生物炭。共改性生物炭的最佳制备条件为:ZnCl2添加量为30%、S添加量为5%、350 ℃下炭化1 h。在共改性生物炭添加量为2%的条件下,汞污染土壤浸出液中汞含量为0.57 μg·L−1,低于GB 5085.3-2007规定的汞限值。Abstract: Using ZnCl2 and Sulfur as modifier, modified biochar based on cornstalk was prepared through utilizing limited oxygen pyrolysis process, and the best preparation conditions of modified biochar were explored by an orthogonal experiment. Modified biochar stabilization effect of mercury contaminated soil was tested and evaluated using concentrations of different mercury forms in soil leach as index, and the optimum adding amount of modified biochar was determined. The results showed that ZnCl2 and sulfur modified biochar could improve the stabilization effect of mercury in soil. The stabilizing effect of ZnCl2 and sulfur modified biochar is significantly higher than that of ZnCl2 or sulfur modified biochar alone. After modified biochar treatment, the exchangeable mercury in the leaching solution of mercury-contaminated soil decreased, while the content of organic binding mercury and residual mercury increased. The stabilization effect of ZnCl2 and sulfur co-modified biochar was significantly higher than that of ZnCl2 or sulfur modified biochar. The optimal preparation conditions of co-modified biochar were 30% ZnCl2, 5% sulfur and 1 h carbonation at 350 ℃. The optimal amount of co-modified biochar was 2%, and the mercury content in the soil leachate was 0.57 μg·L−1, far lower than the mercury limit of GB 5085.3-2007 (0.1 mg·L−1), which could greatly reduce the environmental risk of mercury in soil.
-
表 1 土壤理化性质
Table 1. Physical and chemical properties of soil
总汞/
(mg·kg−1)汞浸出浓度/
(mg·L−1)pH Eh/mV CEC/
(cmol·L−1)总有机碳/
(g·kg−1)675 2.7 7.009 0.46 675 26 表 2 生物炭改性条件
Table 2. Biochar modification conditions
生物炭组别 ZnCl2添加/g S添加量/g 未改性(BC) 0 0 ZnCl2改性(Z-BC) 6.4 0 S改性(S-BC) 0 3.2 共改性(ZS-BC) 6.4 3.2 表 3 生物炭生产正交因素水平表
Table 3. Factor levels of biochar production orthogonal experiment
水平 因素 炭化温度/℃ 炭化时间/h ZnCl2添加量/% S添加量/% 1 350 1 10 5 2 400 1.5 20 10 3 450 2 30 15 表 4 正交实验结果
Table 4. Results of orthogonal experiment
编号 炭化
温度/℃炭化
时间/hZnCl2
添加量/%S添加
量/%浸出液汞
浓度/(μg·L−1)1 350 1.0 10 5 47 2 350 1.5 20 10 0.49 3 350 2.0 30 15 0.54 4 400 1.0 20 15 0.61 5 400 1.5 30 5 0.50 6 400 2.0 10 10 67 7 450 1.0 30 10 20 8 450 1.5 10 15 150 9 450 2.0 20 5 38 表 5 正交实验极差分析
Table 5. Results of range analysis
水平 炭化温度/℃ 炭化时间/h ZnCl2添加量/% S添加量/% K1 48.03 67.61 264 85.5 K2 68.11 150.99 39.1 87.49 K3 208 105.54 21.04 151.15 R 159.97 83.38 242.96 65.65 表 6 最优改性生物炭成分分析
Table 6. Compositions of ZS-CBC
% 水分 灰分 挥发分 固定碳 Cl S Zn 3.75 17.21 40.70 38.34 6.70 5.85 14.00 -
[1] 郑晓梅, 顾鑫生, 曲娜, 等. 基于中文期刊论文的汞污染防治技术的文献计量分析[J]. 环境工程学报, 2019, 13(6): 1502-1512. doi: 10.12030/j.cjee.201904006 [2] 杨雨寒, 靳炜, 刘俐媛, 等. 基于SCI论文的汞污染防治领域的文献计量分析[J]. 环境工程学报, 2019, 13(6): 1488-1501. [3] 李永华, 王五一, 杨林生, 等. 汞的环境生物地球化学研究进展[J]. 地理科学进展, 2004, 23(6): 33-40. doi: 10.3969/j.issn.1007-6301.2004.06.004 [4] SANCHEZ F, MATTUS C H, MORRIS M I, et al. Use of a new leaching test framework for evaluating alternative Treatment processes for mercury-contaminated soils[J]. Environmental Engineering Science, 2002, 19(4): 251-269. doi: 10.1089/109287502760271562 [5] SYVERSEN T, KAUR P. The toxicology of mercury and its compounds[J]. Journal of Trace Elements in Medicine and Biology, 2012, 26(4): 215-226. doi: 10.1016/j.jtemb.2012.02.004 [6] WALLSCHLlÄGER D, DESAI M V M, SPENGLER M, et al. Mercury speciation in floodplain soils and sediments along a contaminated river transect[J]. Journal of Environmental Quality, 1998, 27(5): 1034-1044. [7] 卢光华, 岳昌盛, 彭犇, 等. 汞污染土壤修复技术的研究进展[J]. 工程科学学报, 2017, 39(1): 1-12. [8] 冯钦忠, 陈扬, 李悦, 等. 膨润土类矿物脱汞吸附材料的制备及应用研究[J]. 环境保护科学, 2020, 4(1): 155-161. [9] PAZ-FERREIRO J, LU H, FU S, et al. Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review[J]. Solid Earth, 2014, 5(1): 65-75. doi: 10.5194/se-5-65-2014 [10] SOHI S P, KRULL E, LOPEZ-CAPEL E, et al. A review of biochar and its use and function in soil[J]. Advances in Agronomy, 2010, 105(1): 47-82. [11] 孟凡彬, 孟军. 生物质炭化技术研究进展[J]. 生物质化学工程, 2016, 50(6): 61-66. doi: 10.3969/j.issn.1673-5854.2016.06.010 [12] 袁金华, 徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报, 2011, 20(4): 779-785. doi: 10.3969/j.issn.1674-5906.2011.04.034 [13] 刘玉学, 刘微, 吴伟祥, 等. 土壤生物质炭环境行为与环境效应[J]. 应用生态学报, 2009, 20(4): 977-982. [14] 赵伟, 丁弈君, 孙泰朋, 等. 生物质炭对汞污染土壤吸附钝化的影响[J]. 江苏农业科学, 2017, 45(11): 192-196. [15] 潘亚男, 陈灿, 王欣, 等. 凤眼莲源生物质炭对土壤As、Hg、Cd溶出特性与化学形态的影响[J]. 环境科学学报, 2017, 37(6): 2342-2350. [16] 计海洋, 汪玉瑛, 刘玉学, 等. 生物炭及改性生物炭的制备与应用研究进展[J]. 核农学报, 2018, 32(11): 207-213. [17] TAN G, XU N, XU Y, et al. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution[J]. Bioresource Technology, 2016: S0960852416304503. [18] O'CONNOR D, PENG T, LI G H, et al. Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil[J]. Science of the Total Environment, 2017, 621: 819-826. [19] LIU P, PTACEK C J, ELENA K, et al. Evaluation of mercury stabilization mechanisms by sulfurized biochars determined using X-ray absorption spectroscopy[J]. Journal of Hazardous Materials, 2018, 347: 114-122. doi: 10.1016/j.jhazmat.2017.12.051 [20] DUAN X L, YUAN C G, JING T T, et al. Removal of elemental mercury using large surface area micro-porous corn cob activated carbon by zinc chloride activation[J]. Fuel, 2019, 239: 830-840. doi: 10.1016/j.fuel.2018.11.017 [21] HONG D Y, ZHOU J S, HU C X, et al. Mercury removal mechanism of AC prepared by one-step activation with ZnCl2[J]. Fuel, 2019, 235: 326-335. doi: 10.1016/j.fuel.2018.07.103 [22] 刘锋, 王琪, 黄启飞, 等. 固体废物浸出毒性浸出方法标准研究[J]. 环境科学研究, 2008, 21(6): 9-15. [23] 国家环境保护总局, 国家质量监督检验检疫总局. 危险废物鉴别标准浸出毒性鉴别: GB 5085.3-2007[S/OL]. (2012-01-04)[2020-04-10]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/gthw/wxfwjbffbz/200705/W020120104532752182600.pdf. [24] 化玉谨, 张敏英, 陈明, 等. 炼金区土壤中汞形态分布及其生物有效性[J]. 环境化学, 2015, 34(2): 234-240. doi: 10.7524/j.issn.0254-6108.2015.02.2014051906 [25] 徐振涛, 梁鹏, 吴胜春, 等. 不同生物质炭对土壤中有效态汞的影响及其吸附特征分析[J]. 环境化学, 2019, 38(4): 832-841. doi: 10.7524/j.issn.0254-6108.2018060401 [26] 王营军. 生物炭对土壤中汞的迁移及各形态汞含量变化的影响[D]. 阜新: 辽宁工程技术大学, 2019.