-
2017年,我国餐饮业收入3.9×1012元,而该行业排放挥发性有机污染物(Volatile organic pollutants,VOCs)总量更高达66 244.59 t·a−1[1]。餐饮业油烟污染在某些城市的投诉量已上升为环保投诉案件的50%[2]。餐饮油烟中含有大量VOCs,会导致光化学烟雾污染事件发生[3-4]。同时,流行病学研究也证实餐饮油烟具有致癌风险[5]。因此,近年来,国内外学者针对餐饮源油烟污染开展了大量研究。从地域角度,对北京[6-7]、上海[8-9]、深圳[10]、成都[11]、保定[12]及兰州[13]等不同发达程度地区的餐饮油烟排放污染进行了研究;从餐饮类型角度,对不同菜系和餐饮类型产生的油烟污染进行对比分析[14-16];针对油烟产生过程,通过控制加热温度、油品、食材等因素来研究油烟排放特征及其变化[17-20]。这些研究多为聚焦餐饮油烟的排放特征,如排放浓度及成分等,而对油烟的处理和降解研究还较少。
生物法降解餐饮油烟废气的运行费用低,二次污染小且处理效率较高。LIAO等[21]利用餐饮废油驯化污水厂活性污泥获得了优势菌种以降解餐饮油烟;刘超等[22]分别向生物洗涤装置中放置不同填料,以研究微生物对液相油烟的降解效果;贾力强等[23]向驯化后的活性污泥中投加2种优势菌以强化洗涤液降解油烟VOCs的效果。
本研究利用驯化活性污泥来洗涤净化餐饮油烟中的VOCs,分析驯化过程中活性污泥的性状变化及其对气相油烟VOCs的洗涤效率,探究液相油烟VOCs的组成与微生物群落结构的变化,以评估不同阶段活性污泥对气相油烟VOCs的洗涤效果,并进一步明确液相油烟VOCs的组成与微生物群落之间的联系,以期为生物洗涤处理餐饮油烟的技术应用提供参考。
活性污泥洗涤净化餐饮油烟VOCs及其生物降解过程
Prificaion of VOCs in cooking fume by activated sludge washing and its biodegradation process
-
摘要: 将活性污泥驯化25 d后,考察了其性能及其在洗涤净化餐饮油烟VOCs过程中气液组成与微生物群落的变化。结果表明:驯化后活性污泥的MLSS稳定在3.10 g·L-1,MLVSS稳定在1.60~1.90 g·L-1,SV、SVI分别稳定在35 %和120 mL·g-1;在此条件下,洗涤净化系统对油烟的洗涤效率稳定在85%;系统对油烟中烯醛类、醇类、烷烃类、酯类的洗涤效率达到95 %以上,仅对部分直链醛类的洗涤效果较差;驯化前活性污泥中有机物以氯代物和长链烷烃为主,而驯化后酯类成为新增主要成分。此外,活性污泥液相油烟衰减实验共检出18种有机物化合物。其中,14种有机物在第1~3天降解期内被微生物降解完全;在第4~5天内,十五烷、8-十七烷烯、17-三十五碳烯被完全降解,仅剩三氯乙烯仍保持较高的含量。高通量测序分析结果表明:液相油烟VOCs降解过程中起主要代谢作用的微生物为Planctomicrobium、Spartobacteria、Microbacterium、Steroidobacter、Rubinisphaera、Luteolibacter、Phycisphaera细菌属和Nectriaceae、Trichoderma、Saccharomycetes、Cryptococcus、Trichosporonaceae、Archaeorhizomycetaceae、Yarrowia真菌属;微生物种类及相对丰度受液相油烟VOCs组分影响,且随降解反应的进行而变化。本研究可为生物洗涤法处理餐饮油烟的技术应用提供参考。Abstract: In this paper, the changes of gas-liquid composition and microbial community in the process of washing and purifying restaurant cooking fume VOCs after acclimation of activated sludge for 25 days were studied. The results showed that the MLSS of activated sludge after acclimation was stable at 3.10 g·L−1, MLVSS was stable at 1.60~1.90 g·L−1, SV and SVI were stable at 35% and 120 mL·g−1, respectively. Under these conditions, the washing efficiency of lampblack was stable at 85%, the washing efficiency of enaldehydes, alcohols, alkanes and esters in lampblack reached more than 95%, and only the washing efficiency of some straight-chain aldehydes was low.The organic matter in the activated sludge before domestication was mainly composed of chlorinated substances and long-chain alkanes., while esters became the main components after domestication. In addition, 18 kinds of organic compounds were detected during the liquid phase lampblack attenuation test of activated sludge, 14 organic compounds were completely degraded by microorganisms within the degradation period of 1 to 3 days; pentadecane, 8-heptadecanene, and 17-35carbene were completely degraded within 4 to 5 days, and only trichloroethylene still remained at a high content. High-throughput sequencing analysis indicated that the main metabolizing microorganisms in the degradation process of VOCs in liquid oil smoke were Planctomicrobium, Spartobacteria, Microbacterium, Steroidobacter, Rubinisphaera, Luteolibacter, Phycisphaera and Nectriaceae, Trichoderma, Saccharomycetes, Cryptococcus, Trichosporonaceae, Archaeorhizomycetaceae, Yarrowia. The species and abundance of microorganisms were affected by VOCs components of liquid oil fume and varied with the degradation reaction. This study can provide reference for the application of biological washing method to treat cooking fume.
-
Key words:
- cooking fume /
- multicomponent VOCs /
- bioscrubbing /
- activated sludge /
- biodegradation
-
-
[1] WANG H, XIANG Z, WANG L, et al. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China[J]. Science of the Total Environment, 2017, 621: 1300-1309. [2] 冯铁成, 易红宏, 唐晓龙, 等. 餐饮油烟污染及其净化技术研究进展[J]. 现代化工, 2017, 37(3): 20-23. [3] KUMAR A, SINGH D, KUMAR K, et al. Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution, ratios, OFP and risk assessment[J]. Science of the Total Environment, 2018: 492-501. [4] HAN D, WANG Z, CHENG J, et al. Volatile organic compounds (VOCs) during non-haze and haze days in Shanghai: characterization and secondary organic aerosol (SOA) formation[J]. Environmental Science and Pollution Research, 2017, 24(22): 18619-18629. doi: 10.1007/s11356-017-9433-3 [5] YIN Z, LI H, CUI Z, et al. Polymorphisms in pre-miRNA genes and cooking oil fume exposure as well as their interaction on the risk of lung cancer in a Chinese nonsmoking female population.[J]. OncoTargets and Therapy, 2016, 9(1): 395-401. [6] 何万清, 王天意, 邵霞, 等. 北京市典型餐饮企业大气污染物排放特征[J]. 环境科学, 2020, 41(5): 2050-2056. [7] 程婧晨, 崔彤, 何万清, 等. 北京市典型餐饮企业油烟中醛酮类化合物污染特征[J]. 环境科学, 2015, 36(8): 2743-2749. [8] 王红丽, 景盛翱, 楼晟荣, 等. 餐饮行业细颗粒物( PM2.5 )排放测算方法: 以上海市为例[J]. 环境科学, 2018, 39(5): 1971-1977. [9] 林立, 何校初, 邬坚平, 等. 上海餐饮油烟污染特征研究[J]. 环境科学与技术, 2014, 37(S2): 546-549. [10] 童梦雪, 李勤勤, 赵紫微, 等. 深圳市餐饮油烟醛酮类化合物污染特征研究[J]. 环境科学学报, 2019, 39(12): 4196-4206. [11] 蒋燕, 尹元畅, 王波, 等. 成都市川菜烹饪油烟中VOCs排放特征及其对大气环境的影响[J]. 环境化学, 2014, 33(11): 2005-2006. doi: 10.7524/j.issn.0254-6108.2014.11.025 [12] 刘芃岩, 马傲娟, 邱鹏, 等. 保定市餐饮源排放PM2.5中有机污染物特征及来源分析[J]. 环境化学, 2019, 38(4): 770-776. doi: 10.7524/j.issn.0254-6108.2018091602 [13] 王程塬. 兰州市餐饮油烟污染排放治理技术研究[D]. 兰州: 兰州大学, 2015. [14] 李源遽, 吴爱华, 童梦雪, 等. 餐饮源有机颗粒物排放特征[J]. 环境科学, 2020, 41(8): 3467-3474. [15] 崔彤, 程婧晨, 何万清, 等. 北京市典型餐饮企业VOCs排放特征研究[J]. 环境科学, 2015, 36(5): 1523-1529. [16] 徐敏, 何万清, 聂磊, 等. 传统北京烤鸭烤制过程中大气污染物的排放特征[J]. 环境科学, 2017, 38(8): 3139-3145. [17] TO W M, YEUNG L, CHAO C Y H. Characterisation of gas phase organic emissions from hot cooking oil in commercial kitchens[J]. Indoor and Built Environment, 2000, 9: 228-232. doi: 10.1177/1420326X0000900312 [18] 高雅琴, 王红丽, 许睿哲, 等. 餐饮源挥发性有机物组成及排放特征[J]. 环境科学, 2019, 40(4): 1627-1633. [19] 何万清, 聂磊, 田刚, 等. 基于GC-MS的烹调油烟VOCs的组分研究[J]. 环境科学, 2013, 34(12): 4605-4611. [20] 王红丽, 景盛翱, 乔利平. 餐饮排放有机颗粒物的质量浓度、化学组成及排放因子特征[J]. 环境科学, 2019, 40(5): 2010-2018. [21] LIAO L, LIU H, ZHANG B. Biodegradability of pollutants from cooking fumes[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(4): 428-434. doi: 10.1007/s00128-008-9595-2 [22] 刘超, 廖雷, 魏建文, 等. 不同填料-液相油烟微生物降解动力学研究[J]. 环境科学与技术, 2016, 39(11): 95-100. [23] 贾力强, 廖雷, 刘超. 投加优势菌强化降解液相油烟污染物的动力学研究[J]. 环境工程学报, 2017, 11(2): 1009-1014. doi: 10.12030/j.cjee.201510005 [24] 贾力强, 廖雷, 覃爱苗, 等. 活性污泥洗涤烹饪油烟的传质性能强化[J]. 环境工程学报, 2017, 11(10): 5490-5494. doi: 10.12030/j.cjee.201611037 [25] 周江喜, 廖雷, 吴霁昱, 等. 餐饮油烟污染物成分分析及其洗涤处理研究[J]. 环境工程学报, 2014, 32(3): 79-85. [26] 胡文秀, 廖雷, 贾力强, 等. 生物法净化烹饪油烟营养配比的优化[J]. 工业安全与环保, 2018, 44(12): 63-66. doi: 10.3969/j.issn.1001-425X.2018.12.017 [27] 经艳, 周玉恒, 覃香香, 等. 甘蔗叶汽爆液中挥发性微生物生长抑制物的鉴定[J]. 食品与发酵工业, 2008, 34(11): 29-32. [28] 周洪波, 陈坚, 赵由才, 等. 长链脂肪酸对厌氧颗粒污泥产甲烷毒性研究[J]. 水处理技术, 2002, 28(2): 93-97. doi: 10.3969/j.issn.1000-3770.2002.02.009 [29] 贺延龄. 废水的厌氧生物处理[M]. 北京: 中国轻工业出版社, 1998. [30] 王鑫昕, 王少华, 李维, 等. 细菌的有机溶剂耐受机制[J]. 生物工程学报, 2009, 25(5): 641-649. doi: 10.3321/j.issn:1000-3061.2009.05.001 [31] 何芝. 氯代烃胁迫条件下覆盖土菌群耐受性与群体感应研究[D]. 重庆: 重庆理工大学, 2017. [32] 李鹏飞. 三氯乙烯对黑土微生物的生态毒理效应研究[D]. 哈尔滨: 东北农业大学, 2019.