-
常温常压下饱和蒸汽压大于133.32 Pa、常压下沸点在50~260 ℃的有机化合物统称为挥发性有机物(VOCs)[1]。VOCs是产生PM2.5和O3的重要前体物,进而引起霾和光化学烟雾[2]。大多数VOCs具有毒性和刺激性,例如化工行业应用广泛的苯系物[3],严重危害人群健康。因此,研发高效的VOCs控制技术刻不容缓。催化氧化技术通常在小于350 ℃的温度下即可将VOCs完全氧化为CO2和H2O,具有高效清洁的优势[4]。开发高性能低成本的催化剂是催化氧化技术的关键[5]。
对VOCs催化氧化催化剂的研究目前主要集中在非贵金属氧化物催化剂和负载型贵金属催化剂。非贵金属氧化物催化剂成本低廉,但催化性能相对较差[6]。相比之下,负载型贵金属催化剂由于具有催化性能高、使用寿命长的优点而应用广泛,例如Pt基催化剂催化氧化芳香烃[7-9]。目前,关于负载型贵金属催化剂的研究集中于降低贵金属含量和提高催化性能两个方面[2]。采用活性载体负载贵金属,不仅可以提高贵金属的分散度,而且贵金属与载体之间的相互作用可以影响催化性能[10-12]。MENG等[13]在meso-Co3O4上负载了Pt纳米颗粒,发现贵金属与载体之间的相互作用提升了表面氧浓度,强化了催化剂的氧化还原性能,因此Pt/meso-Co3O4催化剂具有优异的乙炔氧化性能。Co3+具有良好的得电子能力[14-17],由于氧化铈具有优良的储氧能力,通常作为催化剂中的助剂[18-20]。张烁[21]发现,Co0.9Ce0.1Ox催化剂具有良好的丙烷催化氧化性能,在Co3O4中掺杂Ce氧化物可以提升催化剂的表面Co3+比例和氧迁移能力。贵金属颗粒的分散度和粒径是影响催化性能的重要指标[22]。国内外关于贵金属颗粒的分散度和粒径对催化性能影响的研究主要集中于通过改变制备方法控制贵金属颗粒的分散度和粒径[13, 23-25]。浸渍法、共沉淀法、热分解法、化学还原法等工艺是当前用于生产负载型贵金属催化剂的常见工艺,直接浸渍法和沉淀法的缺点是不能制备粒径可控的贵金属[26]。MAO等[26]通过Pt2 (dba)3分解,制备了粒径分布窄的Pt纳米颗粒,将其负载于活性炭上,其催化邻氯硝基苯氢化反应的性能良好。RAMIREZ等[27]在温和的化学条件下通过分解Pt2(dba)3 获得了形状和尺寸均匀的Pt纳米颗粒,催化性能优异。然而,针对Pt纳米颗粒与Co-Ce载体之间的相互作用对催化性能的影响,尤其是不同制备方法之间的对比研究相对较少。
本研究以应用广泛的甲苯作为目标污染物,分别采用铂纳米胶体浸渍法和氯铂酸浸渍法,将Pt纳米颗粒负载在Co0.9Ce0.1Ox载体上;通过ICP-OES、XRD、HRTEM、H2-TPR、XPS等表征手段,研究制备方法对Pt/Co0.9Ce0.1Ox催化剂的氧化还原性能、催化氧化性能等的影响,为设计高效VOCs氧化催化剂提供参考。
2种制备方法对Pt/Co-Ce催化氧化甲苯性能的影响
Effects of two preparation methods on the performance of Pt/Co-Ce catalytic oxidation of toluene
-
摘要: 针对高效催化氧化甲苯催化剂的开发,采用2种不同制备方法制备Pt纳米颗粒并负载在Co-Ce载体上,以实现甲苯的高效脱除;并通过ICP-OES、XRD、HRTEM、H2-TPR、XPS等研究了制备方法对Pt/Co-Ce催化氧化甲苯性能的影响。结果表明,铂纳米胶体浸渍法制备的Pt纳米颗粒尺寸均匀分布在2~4 nm,高活性零价Pt比例高达93.37%。Pt纳米颗粒与Co-Ce载体之间存在相互作用,提升了催化剂的表面氧浓度,使得Co3+的还原温度降低了158 ℃,强化了催化剂的氧化还原性能。因此,0.5Pt/CoCeOx-N催化剂具有优异的甲苯催化氧化性能,与氯铂酸浸渍法制备的0.5Pt/CoCeOx-I催化剂相比,T50下降了68 ℃。本研究结果可为高性能的VOCs催化氧化催化剂的设计提供参考。Abstract: In order to develop an efficient catalytic oxidation catalyst for toluene, Pt nanoparticles were prepared and loaded on Co-Ce support by different preparation methods to achieve efficient removal of toluene. The effects of the preparation method on the catalytic performance of Pt/Co-Ce were investigated by ICP-OES, XRD, HRTEM, H2-TPR, and XPS techniques. The results showed that the Pt nanoparticles prepared by Pt nanocolloid impregnation method were uniformly distributed in the size of 2-4 nm, and the proportion of zero-valent Pt was as high as 93.37%. The interaction between Pt nanoparticles and Co-Ce support enhanced the surface oxygen concentration of the catalyst, which decreased the reduction temperature of Co3+ by 158 °C and strengthened the redox performance of the catalyst. Therefore, the 0.5Pt/CoCeOx-N catalyst has excellent catalytic oxidation performance for toluene, and the T50 decreases by 68 °C compared with the 0.5Pt/CoCeOx-I catalyst prepared by the chloroplatinic acid impregnation method, respectively. This study can provide a reference for the design of high-performance catalysts for the oxidation of VOCs.
-
Key words:
- Toluene /
- catalytic oxidation /
- preparation method /
- Platinum /
- Cobalt /
- Cerium
-
表 1 Pt/ Co0.9Ce0.1Ox 和 Co0.9Ce0.1Ox催化剂的催化性能
Table 1. The catalytic performance of Pt/ Co0.9Ce0.1Ox and Co0.9Ce0.1Ox catalysts.
供试样品 T50 /℃ T90 /℃ Co0.9Ce0.1Ox 259 287 0.5Pt/CoCeOx-I 260 314 0.1Pt/CoCeOx-N 234 257 0.5Pt/CoCeOx-N 192 225 表 2 Pt/ Co0.9Ce0.1Ox 和 Co0.9Ce0.1Ox催化剂的和结构特性
Table 2. The structural data of Pt/ Co0.9Ce0.1Ox and Co0.9Ce0.1Ox catalysts
供试样品 ICP测得Pt
质量分数设计Pt
质量分数SBET /
(m2·g−1)孔容/
(cm3·g−1)孔径/
nmCo0.9Ce0.1Ox − − 71.8 0.158 8.9 0.5Pt/CoCeOx−I 0.41% 0.5% 56.8 0.132 8.9 0.1Pt/CoCeOx−N 0.11% 0.1% 76.6 0.169 9.6 0.5Pt/CoCeOx−N 0.55% 0.5% 45.5 0.113 11.4 表 3 XPS表面元素分布表征结果
Table 3. Surface characterization results from XPS
供试样品 Pt0/
(Pt0+PtOx)Oa/
(Oa+Ol)Co3+/
(Co2++Co3+)Ce3+/
(Ce4++Ce3+)Co0.9Ce0.1Ox / 53.50% 56.79% 31.23% 0.5Pt/CoCeOx-I 38.29% 49.60% 39.92% 27.10% 0.1Pt/CoCeOx-N 93.37% 53.90% 52.87% 31.44% 0.5Pt/CoCeOx-N 91.55% 58.54% 55.11% 33.56% 表 4 Pt/ Co0.9Ce0.1Ox 和 Co0.9Ce0.1Ox催化剂的氧化还原性能
Table 4. Catalytic performance of Pt/ Co0.9Ce0.1Ox and Co0.9Ce0.1Ox> catalysts
样品 总氢耗量/
(μmol·g−1)第一个峰的
理论氢耗量/
(μmol·g−1)第一个峰的
氢耗量/
(μmol·g−1)Co0.9Ce0.1Ox 13 085.2 / / 0.5Pt/CoCeOx-I 13 021.0 51.3 107.1 0.1Pt/CoCeOx-N 13 150.6 <<10.2 90.4 0.5Pt/CoCeOx-N 13 583.9 <<51.3 104.6 -
[1] MOZAFFAR A, Zhang Y L. Atmospheric volatile organic compounds (VOCs) in China: a review[J]. Current Pollution Reports, 2020, 6(3): 250-63. doi: 10.1007/s40726-020-00149-1 [2] HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568. doi: 10.1021/acs.chemrev.8b00408 [3] PAULIS M, PEYRARD H, MONTES M. Influence of chlorine on the activity and stability of Pt/Al2O3 catalysts in the complete oxidation of toluene[J]. Journal of Catalysis, 2001, 199(1): 30-40. doi: 10.1006/jcat.2000.3146 [4] HUANG HB, XU Y, FENG QY, et al. Low temperature catalytic oxidation of volatile organic compounds: A review[J]. Catalysis Science & Technology, 2015, 5(5): 2649-2669. [5] REN QM, FENG ZT, MO SP, et al. 1D-Co3O4, 2D-Co3O4, 3D-Co3O4 for catalytic oxidation of toluene[J]. Catalysis Today, 2019, 332: 160-167. doi: 10.1016/j.cattod.2018.06.053 [6] 赵海楠, 王健, 刘国才, 等. 氧化还原共沉淀法制备的二元锰氧化物催化剂催化氧化苯的效果[J]. 环境工程学报, 2020, 14(3): 701-708. [7] NIKAWA T, NAYA S, KIMURA T, et al. Rapid removal and subsequent low-temperature mineralization of gaseous acetaldehyde by the dual thermos-catalysis of gold nanoparticle-loaded titanium(IV) oxide[J]. Journal of Catalysis, 2015, 326: 9-14. doi: 10.1016/j.jcat.2015.03.005 [8] 安霓虹. 负载型铂催化剂上甲醛的CO低温催化氧化反应性能研究[D]. 长春: 吉林大学, 2012. [9] 李雨馨. 微波辅助乙二醇法制备高性能碳载铂催化剂[D]. 南京: 南京大学, 2019. [10] 刘菊荣, 苏晨光, 董雅鑫, 等. Pd-Na/Al2O3催化剂的表征及室温下催化氧化甲醛的性能[J]. 环境工程学报, 2020, 14(8): 2203-2210. [11] 彭若斯. 二氧化铈负载铂催化剂催化氧化甲苯的性能与反应机理研究[D]. 广州: 华南理工大学, 2017. [12] 王奇. 介孔Co3O4负载贵金属Pt催化剂对乙炔氧化消除的研究[D]. 北京: 中国石油大学(北京), 2018. [13] MENG M, ZHA Y Q, LUO J Y, et al. A study on the catalytic synergy effect between noble metals and cobalt phases in Ce-Al-O supported catalysts[J]. Applied Catalysis A-General. 2006, 301(2): 145-151. [14] WANG Q, LIU J, LI YH, et al. Mesoporous Co3O4 supported Pt catalysts for low-temperature oxidation of acetylene[J]. RSC Advances, 2017, 7(30): 18592-18600. doi: 10.1039/C7RA02266B [15] CARABINEIRO SAC, CHEN X, KONSOLAKIS M, et al. Catalytic oxidation of toluene on Ce-Co and La-Co mixed oxides synthesized by extirpating and evaporation methods[J]. Catalysis Today, 2015, 244: 161-171. doi: 10.1016/j.cattod.2014.06.018 [16] FAURE B, ALPHONSE P. Co-Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature[J]. Applied Catalysis B:Environmental, 2016, 180: 715-725. doi: 10.1016/j.apcatb.2015.07.019 [17] 张维东. 纳米钴氧化物催化剂的合成及对丙烷的完全催化氧化研究[D]. 武汉: 武汉大学, 2017. [18] 喻成龙, 杨文亭, 夏良海, 等. Mn-Ce复合氧化物微球的制备及其催化氧化甲苯性能[J]. 环境工程学报, 2020, 14(6): 1554-1562. doi: 10.12030/j.cjee.201908016 [19] 陈柄旭. 非热等离子体改性Pt/CeO2催化氧化甲苯性能的研究[D]. 广州: 华南理工大学, 2019. [20] 冯振涛. 铈基催化剂的可控制备及其催化降解甲苯机理研究[D]. 广州: 华南理工大学, 2019. [21] ZHANG S, LIU S J, ZHU X C, et al. Low temperature catalytic oxidation of propane over cobalt-cerium spinel oxides catalysts[J]. Applied Surface Science, 2019, 479: 1132-1140. doi: 10.1016/j.apsusc.2019.02.118 [22] GUO YL, WEN MC, LI GY, et al. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: A critical review[J]. Applied Catalysis B:Environmental, 2021: 281. [23] 谭伟, 袁震, 蒋进元, 等. 不同形貌MnO2及其负载Au催化剂的制备与CO和甲苯催化氧化性能研究[J]. 环境工程技术学报, 2018, 8(2): 142-148. doi: 10.3969/j.issn.1674-991X.2018.02.019 [24] LIOTTA LF. Catalytic oxidation of volatile organic compounds on supported noble metals[J]. Applied Catalysis B:Environmental, 2010, 100(3/4): 403-412. doi: 10.1016/j.apcatb.2010.08.023 [25] SANTOS VP, CARABINEIRO SAC, TAVARES PB, Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 198-205. [26] MAO J Z, YAN X H, GU H Z, et al. Hydrogenation of o-chloronitrobenzene by platinum nanoparticles on activated carbon[J]. Chinese Journal of Catalysis, 2009, 30(3): 182-194. doi: 10.1016/S1872-2067(08)60095-9 [27] RAMIREZ E, ERADES L, PHILIPPOT K, et al. Shape control of platinum nanoparticles[J]. Advanced Functional Materials, 2007, 17(13): 2219-2228. doi: 10.1002/adfm.200600633 [28] RUI Z B, CHEN L Y, CHEN H Y, et al. Strong metal-support interaction in Pt/TiO2 Induced by mild HCHO and NaBH4 solution reduction and its effect on catalytic toluene combustion[J]. Industrial & Engineering Chemistry Research, 2014, 53(41): 15879-15888. [29] HANSEN TK, HOJ M, HANSEN BB, et al. The effect of Pt particle size on the oxidation of CO, C3H6, and NO over Pt/Al2O3 for diesel exhaust aftertreatment[J]. Topics in Catalysis, 2017, 60(17/18): 1333-44. doi: 10.1007/s11244-017-0818-9 [30] SEO P W, CHOI H J, HONG S I, et al. A study on the characteristics of CO oxidation at room temperature by metallic Pt[J]. Journal of Hazardous Materials, 2010, 178(1-3): 917-925. doi: 10.1016/j.jhazmat.2010.02.025 [31] WANG M M, CHEN D Y, LI N J, et al. Nanocage-shaped Co3-xZrxO4 solid-solution supports loaded with Pt nanoparticles as effective catalysts for the enhancement of toluene oxidation[J]. Small, 2020, 16(51): 9. [32] TENG F, CHEN M, LI G, et al. High combustion activity of CH4 and catalluminescence properties of CO oxidation over porous Co3O4 nanorods[J]. Applied Catalysis B:Environmental, 2011, 110: 133-140. doi: 10.1016/j.apcatb.2011.08.035 [33] WU H, PANTALEO G, DI CARLO G, et al. Co3O4 particles grown over nanocrystalline CeO2: Influence of precipitation agents and calcination temperature on the catalytic activity for methane oxidation[J]. Catalysis Science & Technology, 2015, 5(3): 1888-1901. [34] PENG R S, SUN X B, LI S J, et al. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene[J]. Chemical Engineering Journal, 2016, 306: 1234-1246. doi: 10.1016/j.cej.2016.08.056 [35] 孙西勃. 二氧化铈纳米棒负载纳米贵金属催化氧化甲苯研究[D]. 广州: 华南理工大学, 2017.