-
截至2019年,我国已建成5 000多座城镇污水处理厂[1],其中有数百座污水处理厂被城市发展区域包围成为“城中厂”[2]。污水处理厂在运行中会产生大量恶臭物质,由此带来的恶臭污染问题日益严重[3]。《恶臭污染物排放标准》(GB14554-1993)中规定了恶臭污染物的排放标准,要求污水处理企业应严格限制相关污染物的排放。与其他恶臭气体去除方法相比,生物除臭法具有投资少、操作简便、运行成本低、二次污染小等优点[4],因而近年来获得迅速发展。据统计,生物除臭专利近5 a的数量已占历年除臭专利总量的75%以上[5],故有必要对污水处理厂产生恶臭物质及生物除臭技术应用中的关键影响因素进行梳理。本文系统总结了污水处理厂恶臭污染的特点,并分析生物技术应用中的关键影响因素及工程应用案例,以期为污水处理厂兴建或改造现有除臭设备、解决恶臭污染问题提供参考。
城镇污水处理厂生物除臭技术的关键影响因素及案例分析
Key influencing factors and case analysis of biological deodorization technology in urban wastewater treatment plants
-
摘要: 城镇污水处理厂运行中产生恶臭气体并因此导致空气污染的问题日益严重。生物除臭技术具有操作简便、运行成本低、二次污染小等优点,适用于污水处理厂恶臭气体的处理。阐述了污水处理厂臭气的主要成分、浓度及分布特点,分析了生物除臭技术的4个关键影响因素(微生物、营养液、pH和填料),并结合影响因素剖析了3个工程应用典型案例,总结了生物除臭技术亟需解决的问题,并展望进一步研究的内容,以期为不同污水处理厂根据其自身条件解决的恶臭污染提供参考。Abstract: The operation of urban wastewater treatment plants (WWTPs) has caused more and more serious odor pollution. Biological deodorization technology has the advantages of easy operation, low operating cost and no secondary pollution, and is applicable to the treatment of malodorous gases in WWTPs. In this study, the main components, concentration and distribution characteristics of odor in WWTPs were described. Four key influencing factors (microorganism, nutrient solution, pH and packing) of biological deodorization technology were annalyzed. Three typical engineering application cases were annalyzed based on the influencing factors. The urgent problems and future development of biological deodorization technology were summarized, in order to provide reference for different sewage treatment plants to solve odor pollution.
-
Key words:
- WWTPs /
- odor pollution /
- biological deodorization technology /
- engineering application
-
表 1 污水处理厂各处理单元环境空气中恶臭物质的质量浓度[16]
Table 1. The mass concentration of malodorous substances in the air of each sewage treatment unit
10−2 mg·L−1 处理单元 硫化氢 甲硫醇 甲硫醚 二甲基二硫醚 氨 乙醛 丙酸 正丁酸 正戊酸 异戊酸 莰烯 提升泵房 1 244.6 85.71 16.33 31.96 0.76 10.61 0.2 0.28 0.0027 0.09 1.4 配水井 3 187.5 200 55.36 13.88 1.59 17.29 0.1 0.04 — — 3.83 浓缩池上清液回流井 212.5 65.71 110.71 28.18 3.72 29.46 0.69 0.28 0.0014 0.05 1.46 初沉池进水口 607.14 9.86 0.83 0.17 — 60.89 0.03 — — — — 生化池进水口 22.77 0.71 0.55 0.13 0.01 18.07 0.03 — — — — 缺氧段末端 3.04 1.27 3.88 0.42 — 23.57 — — — — 0.55 好氧段末端 4.71 0.2 2.77 0.34 — 29.46 — — — — 0.36 最终沉淀池出水 0.35 0.31 0.83 — — 17.68 — — — — — 出水口 0.05 — — — — 19.45 — — — — — 注:—代表结果低于检测限。 表 2 脱硫微生物的特征
Table 2. The characteristics of desulphurization microorganisms
微生物名称 营养类型 底物 最佳pH 最佳温度/℃ 硫氧化酶 Acidianus ambivalens 专性无机营养 S2-, S0 2.5 94 硫氧合酶/还原酶 Acidianus brierleyi 专性无机营养 S2-, S0, S2O32-, S4O62- 1.8 70 硫氧合酶 Oscillatoria limnetica 专性光合营养 S2- 7.5 35 硫化氢:醌还原酶 Chlorobaculum thiosulfatophilum 专性光合营养 S2-, S0, S4O62- 6.8 25~35 硫化细胞色素c;硫代硫酸盐:
细胞色素c还原酶Thiocapsa roseopersicina 兼性光合营养 S2-, S0, S2O32- 7.3 20~35 亚硫酸盐:受体氧化还原酶 Paracoccus denitrificans 兼性无机营养 S2-, S0, S2O32- 8.0 30 亚硫酸盐脱氢酶;硫代硫酸盐氧化酶系统 Paracoccus versutus 兼性无机营养 S2-, S0, S2O32- 8.0 30 亚硫酸盐脱氢酶;硫代硫酸盐氧化酶系统 Thiobacillus denitrificans 专性无机营养 S2-, S0, S2O32-, S4O62-, SO32- 7.0 30 腺苷酰硫酸还原酶;亚硫酸盐氧化酶 Acidithiobacillus ferrooxidans 专性无机营养 S2-, S0, S2O32-, S4O62-, SO32- 2.5 30 硫:铁(III)氧化还原酶;硫化物:
铁(III)氧化还原酶Acidithiobacillus thiooxidans 专性无机营养 S2-, S0, S2O32-, S4O62-, SO32- 2.5 30 亚硫酸盐:细胞色素c氧化还原酶 -
[1] 袁志强, 李超, 苑荣雪, 等. 利用富乙酸剩余污泥厌氧发酵液产中链脂肪酸[J]. 环境工程学报, 2021, 15(10): 1-13. [2] 张璐怡. 新形势下我国污水处理行业发展现状分析[J]. 环境保护, 2021, 49(2): 32-36. [3] REN B, ZHAO Y, LYCZKO N, et al. Current status and outlook of odor removal technologies in wastewater treatment plant[J]. Waste Biomass Valorization, 2019, 10(6): 1443-1458. doi: 10.1007/s12649-018-0384-9 [4] 刘树根, 苏福家, 李婷, 等. 生物滴滤法净化低浓度磷化氢及其微生物群落分析[J]. 环境工程学报, 2018, 12(12): 124-132. [5] YUAN S, LIU H, LIU M. Application status and prospects of biological deodorization in China[J]. IOP Conference Series:Earth and Environmental Science, 2021: 631. [6] FRECHEN F B. Odour emission inventory of German wastewater treatment plants-odour flow rates and odour emission capacity[J]. Water Science Technology, 2004, 50(4): 139-146. doi: 10.2166/wst.2004.0244 [7] 席劲瑛, 胡洪营, 罗彬, 等. 城市污水处理厂主要恶臭源的排放规律研究[J]. 中国给水排水, 2006, 22(21): 99-103. doi: 10.3321/j.issn:1000-4602.2006.21.027 [8] 郭静, 梁娟, 匡颖, 等. 污水处理厂恶臭污染状况分析与评价[J]. 中国给水排水, 2002, 18(2): 78-79. [9] LI R, HAN Z, SHEN H, et al. Emission characteristics of odorous volatile sulfur compound from a full-scale sequencing batch reactor wastewater treatment plant[J]. Sci Total Environ, 2021, 776: 145991. doi: 10.1016/j.scitotenv.2021.145991 [10] LEWKOWSKA P, CIESLIK B, DYMERSKI T, et al. Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques[J]. Environ Res, 2016, 151: 573-586. doi: 10.1016/j.envres.2016.08.030 [11] AOKI S, SUGIMOTO H, BAMBA D. Analysis of odor compounds in sewerage process water and deodor methods[J]. Journal of Japan Society On Water Environment, 2004, 27: 643-650. [12] JIANG G, MELDER D, KELLER J, et al. Odor emissions from domestic wastewater: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(17): 1581-1611. doi: 10.1080/10643389.2017.1386952 [13] 刘锴, 白登明. 污水处理系统臭气污染问题的研究[J]. 环境工程学报, 2004, 5(5): 38-42. doi: 10.3969/j.issn.1673-9108.2004.05.009 [14] BEGHI S P, SANTOS J M, REIS N C, et al. Impact assessment of odours emitted by a wastewater treatment plant[J]. Water Sci Technol, 2012, 66(10): 2223-2228. doi: 10.2166/wst.2012.409 [15] DEVAI I, DELAUNE R D. Emission of reduced malodorous sulfur gases from wastewater treatment plants[J]. Water environment research, 1999, 71(2): 203-208. doi: 10.2175/106143098X121842 [16] 王灿, 胡洪营, 席劲瑛. 城市污水处理厂恶臭污染及其评价体系[J]. 给水排水, 2005, 31(9): 15-19. doi: 10.3969/j.issn.1002-8471.2005.09.004 [17] SAHU S, LENKA R K. European Developments for Purification of Biological Waste Gas[J]. European Journal of Molecular Clinical Medicine, 2020, 7(11): 703-708. [18] 黄进刚, 徐晓军, 李淑芬, 等. 活性污泥中高效除臭菌株的驯化和筛选[J]. 环境工程学报, 2008, 2(11): 1547-1550. [19] PLANTE A F, Soil biogeochemical cycling of inorganic nutrients and metals, in: Soil microbiology, ecology and biochemistry, Elsevier, 2007, pp. 389-432. [20] НNATUSH S, MASLOVSKA O, SEHIN T, et al. Waste water treatment by exoelectrogenic bacteria isolated from technogenically transformed lands[J]. Ecological Questions, 2020, 31(1): 35-44. [21] KUSHKEVYCH I, BOSáKOVá V, VíTĚZOVá M, et al. Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide[J]. Antioxidants, 2021, 10(6): 829. doi: 10.3390/antiox10060829 [22] VIKRANT K, KAILASA S K, TSANG D C, et al. Biofiltration of hydrogen sulfide: trends and challenges[J]. Journal of cleaner production, 2018, 187: 131-147. doi: 10.1016/j.jclepro.2018.03.188 [23] HE R, YAO X-Z, CHEN M, et al. Conversion of sulfur compounds and microbial community in anaerobic treatment of fish and pork waste[J]. Waste Management, 2018, 76: 383-393. doi: 10.1016/j.wasman.2018.04.006 [24] YANG B, NIU X, DING C, et al. Performance of biotrickling filter inoculated with activated sludge for chlorobenzene removal[J]. Procedia Environmental Sciences, 2013, 18: 391-396. doi: 10.1016/j.proenv.2013.04.052 [25] BASKARAN D, SINHAROY A, PAKSHIRAJAN K, et al. Gas-phase trichloroethylene removal by Rhodococcus opacus using an airlift bioreactor and its modeling by artificial neural network[J]. Chemosphere, 2020, 247: 125806. doi: 10.1016/j.chemosphere.2019.125806 [26] MUDLIAR S, GIRI B, PADOLEY K, et al. Bioreactors for treatment of VOCs and odours–A review[J]. Journal of environmental management, 2010, 91(5): 1039-1054. doi: 10.1016/j.jenvman.2010.01.006 [27] BADILLA D B, GOSTOMSKI P A. Nutrient addition in biofiltration for air pollution control[J]. International Journal of Environmental Engineering, 2015, 2: 161-165. [28] OMRI I, AOUIDI F, BOUALLAGUI H, et al. Performance study of biofilter developed to treat H2S from wastewater odour[J]. Saudi journal of biological sciences, 2013, 20(2): 169-176. doi: 10.1016/j.sjbs.2013.01.005 [29] JIA T, SUN S, ZHAO Q, et al. Extremely acidic condition (pH< 1.0) as a novel strategy to achieve high-efficient hydrogen sulfide removal in biotrickling filter: Biomass accumulation, sulfur oxidation pathway and microbial analysis[J]. Chemosphere, 2022, 294: 133770. doi: 10.1016/j.chemosphere.2022.133770 [30] SOREANU G, Biotechnologies for improving indoor air quality, in: Start-up creation, Elsevier, 2016, pp. 301-328. [31] DUMONT E, ANDRèS Y, LE CLOIREC P, et al. Evaluation of a new packing material for H2S removed by biofiltration[J]. Biochem. Eng. J., 2008, 42(2): 120-127. doi: 10.1016/j.bej.2008.06.012 [32] FRIEDRICH M, KOSMIDER J, TEREBECKI P, et al. Odour abatement of waste gases from sludge thickeners in wastewater treatment plant using bioscrubber[J]. Chemical Engineering Transactions, 2014, 40: 205-210. [33] 魏在山, 刘小红, 孙建良, 等. PCR-DGGE技术用于处理苯乙烯废气的生物滴滤塔中微生物优势菌种解析[J]. 环境工程学报, 2012, 6(2): 571-576. [34] SAN-VALERO P, GABALDóN C, PENYA-ROJA J, et al. Study of mass oxygen transfer in a biotrickling filter for air pollution control[J]. Procedia Engineering, 2012, 42: 1726-1730. doi: 10.1016/j.proeng.2012.07.565 [35] 陈益清, 陈雷, 伍健威, 等. 填料对生物滴滤塔去除H2S的影响[J]. 环境工程学报, 2016, 10(7): 3763-3767. doi: 10.12030/j.cjee.201512218 [36] 赵珊, 郭学彬, 杨晓芳, 等. 聚氨酯泡沫的改性及其在臭气治理中的应用[J]. 环境工程学报, 2020, 14(9): 164-170. [37] YANG C, CHEN H, ZENG G, et al. Biomass accumulation and control strategies in gas biofiltration[J]. Biotechnol. Adv., 2010, 28(4): 531-540. doi: 10.1016/j.biotechadv.2010.04.002 [38] ESTRADA J M, DUDEK A, MUñOZ R, et al. Fundamental study on gas–liquid mass transfer in a biotrickling filter packed with polyurethane foam[J]. Journal of Chemical Technology Biotechnology, 2014, 89(9): 1419-1424. doi: 10.1002/jctb.4226 [39] BINDRA N, DUBEY B, DUTTA A. Technological and life cycle assessment of organics processing odour control technologies[J]. Science of the Total Environment, 2015, 527: 401-412. [40] BARBUSINSKI K, KALEMBA K, KASPERCZYK D, et al. Biological methods for odor treatment - A review[J]. Journal of Cleaner Production, 2017, 152: 223-241. doi: 10.1016/j.jclepro.2017.03.093 [41] 付妍, 胡清源, 温暖家, 等. 石化行业恶臭废气生物净化装置的设计与运行[J]. 给水排水, 2016, 42(1): 75-78. doi: 10.3969/j.issn.1002-8471.2016.01.017 [42] GABRIIL D, DESHUSSES M A. Performance of a Biotrickhg Fillter Full-scale Treating H2S at a Gas Contact Time of 1.6 to 2.2 Seconds[J]. Environmental Progress, 2003, 22: 111-118. doi: 10.1002/ep.670220213 [43] HANSEN N G, RINDEL K. Bioscrubbing: An effective and economic solution to odour control at sewage-treatment plants[J]. Water and Environment Journal, 2001, 15: 141-146. doi: 10.1111/j.1747-6593.2001.tb00321.x [44] WANG Y C, HAN M F, JIA T P, et al. Emissions, measurement, and control of odor in livestock farms: A review[J]. Science of The Total Environment, 2021, 776: 145735. doi: 10.1016/j.scitotenv.2021.145735 [45] ARELLANO-GARCíA L, DORADO A D, MORALES-GUADARRAMA A, et al. Modeling the effects of biomass accumulation on the performance of a biotrickling filter packed with PUF support for the alkaline biotreatment of dimethyl disulfide vapors in air[J]. Applied microbiology biotechnology, 2015, 99(1): 97-107. doi: 10.1007/s00253-014-5929-7 [46] ANDRIANI D, RAJANI A, SANTOSA A, et al, A review on biogas purification through hydrogen sulphide removal [J]. IOP Conference Series: Earth and Environmental Science, 2020: 012034.