-
随着城市污水处理规模的不断扩大,市政污水处理厂的剩余污泥产生量相应激增[1]。剩余污泥是一类含有机物、细菌菌体、无机颗粒、胶体等的复杂混合物[2],其初始含水率大于90%,初步脱水后也在80%左右,故无法满足传统处理处置方法对污泥含水率的要求[3]。因此,需要采用干化技术对污泥进行预处理。但是,在高温直接干化过程中,污泥中含硫物质会受热氧化分解,从而会导致大量以二氧化硫(SO2)为主的含硫物质的恶臭气体产生,对周围环境造成危害[4]。据报道,污泥直接干化处理过程产生的SO2质量浓度约有392~2 146 mg·m−3(即常温常压下150~820 ppm[5]),远超现行的大气污染物排放标准。
传统的烟气脱硫技术存在总体脱硫效率不高、脱硫设备系统占地面积大、投资成本高、能源消耗高、设备易腐蚀、产生废水废渣易造成二次污染等问题。因此,将其用于处理规模较小的污泥干化尾气时经济性差,且不满足环境友好的要求。生物脱硫法指部分微生物参与自然界中硫元素循环以获得能量,并利用化能自养硫细菌代谢SO2的过程,最终可将硫氧化物转化降解[6]。该方法具有操作安全、运行费用低、二次污染低、净化效率高等优点,已受到广泛关注[7]。在处理大流量、低浓度、生物降解性好的SO2时,生物法较物理化学法更具经济性和高效性。在生物滴滤法中,微生物既可固定附着在填料上,也可悬浮在喷淋循环液中,兼有生物过滤池和生物洗涤池的双重作用。因此,该方法具有操作简单、生物相和液相均循环流动、填料不易堵塞、污染物去除效率高等优点。生物滴滤塔亦为最常见的生物反应器之一[8-9]。
目前,关于生物脱硫工艺的研究主要集中在新型生物负载填料的开发和生物反应器的改良上。有研究者在60 ℃条件下,利用实验室规模的嗜热生物滤池处理SO2。该滤池以聚氨酯泡沫为填料,以嗜热脱硫细菌为主要微生物,探究了填料种类和环境条件对微生物种群数量的影响,以及对SO2去除率的影响[10-12]。另有研究者构建了一种含悬浮区和固定区的两段一体化生物反应器用于处理SO2,处理效率达85%以上[13]。然而,从生活污水污泥中筛选高效脱硫微生物的研究鲜有报道。因此,本研究以市政污泥为原料,从其中筛选高效脱硫菌嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,A.f),并以页岩陶粒为生物填料搭建生物滴滤塔,探究以脱除SO2为目标的小试规模生物滴滤塔的工艺参数,以期为生物脱硫技术的推广应用提供参考。
生物滴滤塔脱除污泥干化尾气中的SO2
Removal of sulfur dioxide from exhaust gas of sludge drying by biotrickling filter tower
-
摘要: 以市政污泥干化尾气中的主要含硫物质二氧化硫(SO2)为处理对象,从市政污泥中筛选出高效脱硫菌——嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,A.f),搭建了实验室规模的生物滴滤塔,考察了进气质量浓度、气体停留时间、营养液喷淋密度和营养液中Fe2+浓度对生物滴滤塔脱除SO2的影响。结果表明:在SO2质量浓度约合38~304 mg·m−3(即常温常压下100~800 ppm)时,脱硫效率稳定在约97%;当气体停留时间由150 s降至30 s时,脱硫效率迅速降至75%;当营养液的喷淋密度小于0.36 m3·(m2·h)−1时,脱硫效率降至92%,但喷淋密度为0.36~1.08 m3·(m2·h)−1时,脱硫效率保持在约97%;当作为生物脱硫反应关键的液相Fe2+浓度由0.1 mol·L−1降至0.02 mol·L−1时,脱硫效率迅速降至84%以下。本研究结果可为生物脱硫技术的推广应用提供参考。Abstract: Sulfur dioxide (SO2), which is the main sulfur-containing substance in the exhaust gas of sludge drying process, was chosen as the subject in this paper. A laboratory-scale biotrickling filter tower was constructed by screening the highly efficient desulfurization bacteria Acidithiobacillus ferrooxidans (A.f) from municipal sludge. The effects of inlet gas mass concentration, gas residence time, nutrient solution spray density and Fe2+ concentration in nutrient solution on the removal of SO2 in the biological trickling filter tower were investigated. Results showed that when the concentration of SO2 changed from 38 to 304 mg·m−3 (around 100 to 800 ppm under room temperature and pressure), the desulfurization efficiency basically maintained at about 97%, but the desulfurization efficiency dropped rapidly to 75% when the gas residence time decreased from 150 s to 30 s. The desulfurization efficiency rapidly decreased to 92% when nutrient solution spray density was less than 0.36 m3·(m2·h)−1, while when the spraying density was in the range of 0.36-1.08 m3·(m2·h)−1, the desulfurization efficiency remained close to 97%.. When the concentration of Fe2+ decreaced from 0.1 mol·L−1 to 0.02 mol·L−1, the desulfurization efficiency rapidly decreased to below 84%. This results of the can provide reference for the promotion and application of biodesulfurization technology.
-
Key words:
- bio-trickling filter tower /
- SO2 /
- desulfurization bacteria /
- desulfurization efficiency
-
表 1 原污泥特性指标
Table 1. Characteristics of raw sludge
污泥种类 含水率/% VS/(g·L−1) TS/(g·L−1) VS/TS/% CST/s SRF/
(×1013 m·kg−1)pH 密度/(g·mL−1) 剩余活性污泥 94.10 22.51 59.46 37.90 267.0 2.03 6.84 1.00 活性污泥 98.90 10.19 45.70 22.28 35.6 0.14 6.69 1.00 注:VS为挥发性固体含量(volatile solid);TS为总固体含量(total solid);CST为毛细吸水时间(capillary suction time);SRF为比阻(specific resistance to filtration)。 -
[1] 桂成民. 微波热解制备污泥生物炭研究[D]. 广州: 广东工业大学, 2015. [2] 董智伟. 污泥生物炭的理化性质及其对铜吸附特性的研究[D]. 昆明: 昆明理工大学, 2019 [3] 李笃中, 何品晶. 污泥性质、胶羽结构与处置[J]. 科技导报, 2004, 22(9): 26-30. doi: 10.3321/j.issn:1000-7857.2004.09.010 [4] 陈文和, 邓明佳, 罗辉. 污泥直接干化产生的恶臭及挥发性有机物特征研究[J]. 环境科学, 2014, 1(8): 2897-2902. [5] 丁文杰. 生物滤池去除污泥干化尾气中恶臭物质的研究[D]. 北京: 中国科学院研究生院, 2016. [6] 贾惠茗. 生物滴滤塔脱除二氧化硫的试验研究[D]. 西安: 西安建筑科技大学, 2012. [7] BURGESS J E, PARSONS S A, STUETZ R M. Developments in odour control and waste gas treatment biotechnology: a review[J]. Biotechnology Advances, 2001, 19(1): 35-63. doi: 10.1016/S0734-9750(00)00058-6 [8] 李娟娟, 段学军, 窦艳艳, 等. 改良型生物滴滤塔净化SO2废气的影响因素研究[J]. 河南科技, 2015(18): 127-129. doi: 10.3969/j.issn.1003-5168.2015.18.046 [9] 王小军, 徐校良. 生物法净化工业废气的研究进展[J]. 化工进展, 2014, 33(1): 213-218. [10] ZHANG J Y, LI L, LIU J X. Thermophilic biofilter for SO2 removal: Performance and microbial characteristics[J]. Bioresource Technology, 2015, 180: 106-111. doi: 10.1016/j.biortech.2014.12.074 [11] ZHANG J Y, LI L, LIU J X. Temporal variation of microbial population in a thermophilic biofilter for SO2 removal[J]. Journal of Environmental Sciences, 2016, 39(1): 4-12. [12] ZHANG J Y, LI L, LIU J X, et al. Temporal variation of microbial population in acclimation and start-up period of a thermophilic desulfurization biofilter[J]. International Biodeterioration & Biodegradation, 2016, 109: 157-164. [13] LIN J, DING W J, LI L, et al. Continuous desulfurization and bacterial community structure of an integrated bioreactor developed to treat SO2 from a gas stream[J]. Journal of Environmental Sciences, 2015, 37: 130-138. doi: 10.1016/j.jes.2015.05.029 [14] 李蔓. 嗜酸氧化亚铁硫杆菌驯化条件的研究[J]. 武汉科技大学学报, 2009, 22(2): 12-16. [15] 中华人民共和国卫生部, 国家标准化管理委员会. GB/T 16157-1996 固定污染源排气中颗粒物和气态污染物采样方法[S]. 北京: 中国标准出版社, 1997. [16] KUCERA J, PAKOSTOVA E, JANICZEK O, MANDL M. Changes in Acidithiobacillus ferrooxidans ability to reduce ferric iron by elemental sulfur[J]. Advanced Materials Research, 2015, 1130: 97-100. doi: 10.4028/www.scientific.net/AMR.1130.97 [17] KOEHLER M. Isolation and characterization of Thiobacillus ferrooxidans from coal acid mine drainage[J]. International Journal of Applied Environmental Sciences, 2018, 13(12): 1097-1109. [18] NESTOR D, VALDIVIA U, CHAVES A P. Mechanisms of bioleaching of a refractory mineral of gold with Thiobacillus ferrooxidans[J]. International Journal of Mineral Processing, 2001, 62(1): 187-198. [19] CHO E H. Removal of SO2 with oxygen in the presence of Fe(III)[J]. Metallurgical Transactions B, 1986, 17(4): 745-753. doi: 10.1007/BF02657136 [20] KHOSHNEVISAN B, TSAPEKOS P, NA BORJABAD, et al. A review on prospects and challenges of biological H2S removal from biogas with focus on biotrickling filtration and microaerobic desulfurization[J]. Biofuel Research Journal, 2017, 4: 741-750. doi: 10.18331/BRJ2017.4.4.6 [21] 袁博文. 生物滴滤塔脱除SO2降解菌的筛选及降解工艺的研究[D]. 西安: 西安建筑科技大学, 2010. [22] SUN Y, XUE S, LI L, et al. Sulfur dioxide and o-xylene co-treatment in biofilter: Performance, bacterial populations and bioaerosols emissions[J]. Journal of Environmental Sciences, 2018, 69: 41-51. doi: 10.1016/j.jes.2017.03.039 [23] 方力. 氧化亚铁硫杆菌的诱变及其对烟气SO2去除效果的研究[D]. 西安: 西安工程大学, 2015. [24] LÓPEZ L R, DORADO A D, MORA M, et al. Modeling an aerobic biotrickling filter for biogas desulfurization through a multi-step oxidation mechanism[J]. Chemical Engineering Journal, 2016, 294: 447-457. doi: 10.1016/j.cej.2016.03.013