-
武汉市河网众多,素有“九省通衢”之称[1]。金湖位于武汉市西郊、东西湖区中部,地理位置显要,是典型的门户区[2]。经济的快速发展和城市化进程的加快使得城市基础设施建设与管理滞后于城市扩张,伴随而生的城市污水处理能力不足、雨污管道合流、垃圾堆放不当和截污治污设施落后导致污水排入环境水体使其受到污染,出现黑臭现象[3]。近年,武汉市计划着重建设东西湖区,使其成为国家级生态示范区。首要任务就是治理黑臭水体,而金湖生态修复是东西湖区内景观湖泊黑臭水体生态修复治理的典型代表之一。
近年来,金湖周边小区雨污分流改造工程的推进对遏制水质持续恶化有一定的效果,点源污染也得到了一定程度的控制,但市政道路、公建单位的雨污分流改造工程尚未开展。据统计,武汉市共有47个劣V类湖泊,金湖亦位列其中[4]。2019年,武汉市人民政府要求切实推进全市清源、清管、清流行动(简称“三清”行动)。“三清”行动方案要求2021年底之前,全市河、湖、流域实现全面截污,基本消除黑臭水体。目前,对黑臭水体的治理修复一般集中在对水体本身的净化方面[5],其工程措施一般集中在清淤[6]、截留等点源面源控制方面[7]。近年来,涉及黑臭治理与全方位生态修复的案例有所增多[8-9],已逐渐形成系统的水体黑臭治理与长效生态修复治理思路,但仍需使用具体案例来验证其效果,并丰富其治理体系。本工程在分析金湖概况及污染原因的基础上,结合已有治理思路,针对东西湖区金银湖中的金湖水体,采取湖泊形态控制、点源污染控制、面源污染控制、内源污染控制及沉水植物群落建设等一系列的工程措施,通过长效的水生态系统运行管理维护,有效提升湖泊水质,改善湖泊水域生态环境和景观效果。本研究以武汉市金湖黑臭水体为案例,着重分析水体黑臭原因与生态修复治理思路,系统阐述了金湖黑臭水体治理修复技术及措施,以期为其他黑臭水体治理工程提供参考。
景观湖泊黑臭水体生态修复措施和效果——以武汉市金湖生态修复工程为例
Ecological restoration measures and effects of black and odorous water bodies in landscape lakes——Taking Jinhu ecological restoration project in Wuhan city as an example
-
摘要: 为修复受到污染呈黑臭状态的金湖水体,建设金银湖国家湿地公园,在分析金湖水质、底质概况及黑臭水体成因的基础上,采取点源污染、面源污染、内源污染同步控制和边治理边修复的方法,在不进行大规模清淤、不扰动水体情况下建设湖滨缓冲带,对湖泊底质进行修复。结果表明:湖泊水质得到了明显改善,各项水质指标均低于《城市黑臭水体整治工作指南》中的轻度黑臭标准限值,修复后水质达到了地表水Ⅲ类标准;在中央环保督察组巡视反馈重点整治湖泊水质变化报告中被评为“好转”等级,实现了黑臭水体治理以及生态修复的目标。该治理修复案例可为城市内陆景观湖泊生态修复提供参考。Abstract: In order to restore the polluted Jinhu Lake with black and odorous waterbody, and build the Jinyin Lake National Wetland Park, on the basis of analyzing the water quality, sediment conditions and causes of black and odorous water, the methods of simultaneous control of point source pollution, non-point source pollution, endogenous pollution, and restoration while treatment were used to build a lakeside buffer zone and restore the lake bottom without large-scale dredging and water disturbance. The results showed that the water quality of Jinhu Lake was significantly improved, and all water quality indicators were lower than the mild black and odor standard limit in the “Guidelines for Urban Black and Smelly Water Remediation Work”, and the water quality reached Class III level of surface water quality standard; In the report of the improvement of lake water quality inspected by the central environmental protection inspection team, the water quality of Jinhu Lake was rated as “improved”. The goal of black and odorous water treatment and ecological restoration was achieved. This treatment and restoration case can provide a reference for the ecological restoration of urban inland landscape lakes.
-
表 1 微生物菌剂主要指标
Table 1. Main indicators of microbial agents
功能 主要成分 菌落数/
(cfu·g−1)适宜
温度/℃总氮降解 硝化细菌、光合细菌等 1.7×1010 5~45 有机质降解 有机质分解菌、乳酸菌、酵母菌等 5.1×107 5~45 水质净化 有机物分解菌、藻类生长抑制剂 9.8×109 5~45 表 2 沉水植物性能指标比选
Table 2. Comparison and selection of performance indexes of submerged plants
植物 种植
水深/m适宜
水温/℃株高/cm 适光性 冬季生长情况 TN去除
率/%TP去除
率/%苦草 0.5~2 10~30 20~180 喜强光 冬季生长慢 72.0±3.2 58.5±2.7 轮叶黑藻 1~3 15~30 40~80 喜强光,对弱光有较好适应性 冬季生长慢 83.1±4.5 70.8±3.5 金鱼藻 0.5~3 10~30 40~150 喜弱光,强光可导致死亡 枯萎,次年萌发 79.3±4.0 67.7±3.2 穗状狐尾藻 0.2~1 10~20 100~250 喜强光 冬季生长慢 68.9±2.7 52.3±2.8 微齿眼子菜 0.5~0.15 10~20 10~30 喜强光 冬季枯萎,次年通过根状茎生长 63.8±3.1 49.2±3.1 表 3 2021年11月金湖监测点水质情况
Table 3. Water quality of Jinhu monitoring points in November 2021
监测点位 化学需氧量/
(mg·L−1)氨氮(以N计)/
(mg·L−1)总氮/
(mg·L−1)总磷/
(mg·L−1)5# 14 0.44 0.61 0.05 6# 10 0.353 0.56 0.05 7# 15 0.662 0.88 0.05 8# 13 0.541 0.75 0.04 Ⅲ类标准限值 ≤20 ≤1.0 ≤1.0 ≤0.2 -
[1] 彭皓琳. 武汉城市发展: 反思与展望[D]. 武汉: 华中科技大学, 2005. [2] 李志军, 李德旺, 雷明军. 武汉市金银湖动态水网构建思路与方法初探[J]. 人民长江, 2008(23): 3. [3] 王旭, 王永刚, 孙长虹, 等. 城市黑臭水体形成机理与评价方法研究进展[J]. 应用生态学报, 2016, 27(4): 1331-1340. [4] 武汉市生态环境局. 2019年武汉市生态环境状况公报[EB/OL]. (2020-06-08) [2021-11-15]. http://hbj.wuhan.gov.cn/fbjd_19/xxgkml/zwgk/hjjc/hjzkgb/202006/t20200608_1369067.html. [5] 吴保生, 陈红刚, 马吉明. 美国基西米河生态修复工程的经验[J]. 水利学报, 2005(4): 473-477. doi: 10.3321/j.issn:0559-9350.2005.04.016 [6] 管非凡, 张春雷, 包建平, 等. 法国塞纳河疏浚淤泥治理模式及其对中国的借鉴[C]//中国水利学会. 中国水利学会2014学术年会论文集(下册), 2014: 949-955. [7] 王文君, 黄道明. 国内外河流生态修复研究进展[J]. 水生态学杂志, 2012, 33(4): 142-146. [8] 路金霞, 柏杨巍, 傲德姆, 等. 上海市黑臭水体整治思路、措施及典型案例分析[J]. 环境工程学报, 2019, 13(3): 541-549. doi: 10.12030/j.cjee.201901064 [9] 吕纯剑, 高红杰, 李晓洁, 等. 沈阳市黑臭水体溶解性有机物组分及其光学特征[J]. 环境工程学报, 2019, 13(3): 559-568. doi: 10.12030/j.cjee.201812089 [10] 武汉市生态环境局. 东西湖区环境监测简报(水质)[EB/OL]. (2021-11-01) [2021-11-15]. http://hbj.wuhan.gov.cn/fbjd_19/xxgkml/zwgk/hjjc/dbsjjzsyysydjcbg/202111/t20211103_1826270.html. [11] 龚春生. 城市小型浅水湖泊内源污染及环保清淤深度研究[D]. 南京: 河海大学, 2007. [12] 丰茂武, 吴云海. 国内外湖泊富营养化的防治对策与展望[J]. 广州环境科学, 2006, 21(4): 4. [13] POULADI P, BADIEZADEH S, POULADI M, et al. Interconnected governance and social barriers impeding the restoration process of Lake urmia[J]. Journal of Hydrology, 2021, 598(4): 126489. [14] 夏祖伟, 杨平, 朱勍, 等. 城市内河生态环境治理规划及措施研究[J]. 人民黄河, 2020, 42(10): 6. doi: 10.3969/j.issn.1000-1379.2020.10.002 [15] STONE M, DROPPO I G. Distribution of lead, copper and zinc in size-fractionated river bed sediment in two agricultural catchments of southern Ontario, Canada[J]. Environmental Pollution, 1996, 93(3): 353-362. doi: 10.1016/S0269-7491(96)00038-3 [16] 栾约生, 张为, 石纲, 等. 湖北鄂州城市湖泊底泥重金属空间分布特征与污染评价[J]. 长江科学院院报, 2020, 37(1): 30-36. doi: 10.11988/ckyyb.20181371 [17] 李国宏, 叶碧碧, 吴敬东, 等. 底泥原位洗脱过程中氮磷含量与形态变化特征[J]. 环境科学研究, 2020, 33(2): 10. [18] U. S. Environmental Protection Agency Sediment Oversight Technical Committee. Sediment classification methods compendium[R]. Environmental Protection Agency, 1992: 65-77. [19] 陈明, 刘晓端, 魏连伟, 等. 永定河上游水体与底泥中污染物的分布规律[J]. 岩矿测试, 2001, 20(2): 6. [20] 吴红飞, 魏小飞, 关保华, 等. 沉水植物对鱼类扰动引起的沉积物再悬浮的影响[J]. 江苏农业科学, 2015(4): 369-370. [21] 龙振宇, 孙世军, 欧洋, 等. 吉林省西部10个浅水湖泊水环境质量和大型底栖动物群落特征[J]. 湿地科学, 2018, 16(5): 642-650. [22] 孔繁翔, 高光. 大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J]. 生态学报, 2005, 25(3): 589-595. doi: 10.3321/j.issn:1000-0933.2005.03.028 [23] 蔡鲁祥, 吴文磊, 高一, 等. 生态浮岛复合技术净化黑臭河道废水的实验研究[J]. 环境污染与防治, 2016, 38(12): 17-21. [24] 刘燕, 尹澄清, 车伍. 植草沟在城市面源污染控制系统的应用[J]. 环境工程学报, 2008, 2(3): 334-339. [25] 叶闽, 杨国胜, 张万顺, 等. 城市面源污染特性及污染负荷预测模型研究[C]//中国环境科学学会. 环境模拟与污染控制学术研讨会. 北京, 2005: 165-166. [26] 程志永. 巢湖湖滨缓冲带生态景观构建与功能修复模式研究[J]. 西安建筑科技大学学报(社会科学版), 2015, 34(2): 58-62. [27] 吴小燕. 自然式种植在城市滨水绿带景观设计中的应用[J]. 中国市政工程, 2021(4): 33-35. doi: 10.3969/j.issn.1004-4655.2021.04.010 [28] 瞿畏, 龚丽玲, 邓征宇, 等. 2017年南汉垸水渠清淤前后水中沉积物与其上覆水界面氮扩散通量估算[J]. 湿地科学, 2020, 18(4): 468-474. [29] 古小治, 王强, 张雷, 等. 物理改良对湖泊沉积物和间隙水特征的影响[J]. 中国环境科学, 2010, 30(2): 256-262. [30] 罗希, 马俊超. 关于浅水湖泊沉水植物覆盖度设计依据的探讨[J]. 长江科学院院报, 2021, 38(3): 6. [31] 吴振斌, 邱东茹, 贺锋, 等. 沉水植物重建对富营养水体氮磷营养水平的影响[J]. 应用生态学报, 2003, 14(8): 1351-1353. doi: 10.3321/j.issn:1001-9332.2003.08.031 [32] 林培. 《城市黑臭水体整治工作指南》解读[J]. 建设科技, 2015(18): 14-15.