-
短程硝化作用(NH4+-N→NO2−-N)的顺利实现是确保某些新型生物脱氮工艺(如短程硝化/反硝化工艺、厌氧氨氧化(ANAMMOX)工艺等)快速启动且高效稳定运行的前提[1-2]。随着上述新技术越来越多地应用于城镇生活污水的处理,如何达成并维持稳定的短程硝化过程随之成为污水生物脱氮领域的研究热点[3]。短程硝化作用的发生与稳定运行可通过调控和优化水处理反应装置的温度、水力停留时间(HRT)、溶解氧(DO)含量、pH值以及污泥龄(SRT)等工况参数来实现[4-6]。然而,对于低NH4+-N浓度、常温且水质波动较大的城镇生活污水,上述手段均无法有效抑制亚硝酸盐氧化菌(NOB)的过量增殖,致使系统中的短程硝化难以为继[4,7]。为此,亟需探寻新的技术手段或调控措施以期实现反应装置中稳定且高水平的NO2−-N累积率。
由于较低的氧化还原电位,NH4+-N既可在好氧条件下被硝化细菌氧化为NO2−-N或NO3−-N[8],也可在缺氧条件下被厌氧氨氧化菌(AnAOB)氧化[9],还可被某些微生物作为电子供体使其与Fe(Ⅲ)、硫酸盐或固体电极等反应[10-11]。考虑到生物电化学系统(BES)能够利用电活性微生物催化电极反应实现胞外电子与电极间的传递,进而完成污染底物的氧化或还原[12],则可推断NH4+-N可作为阳极底物被BES厌氧氧化。近年来,部分学者随之开展了此方面的尝试。MIN等[13]首次指出,BES在厌氧条件下具备高效转化NH4+-N的潜力。HE等[14]随之发现,以NH4+-N为唯一能源的BES可产生高达0.078 mA的电流峰值,系统脱氮效率则稳定在(49.2±5.9)%,此时阳极电活性生物膜中的优势菌群为Nitrosomonas europaea,推测该类微生物在厌氧条件下具有直接以NH4+-N为燃料进行产电的能力,或者可通过化能自养代谢合成有机物为产电菌提供能量。而有研究[15-18]相继表明,BES于特定条件下可在阳极培育出电活性氨氧化生物膜,此生物膜具备进行电极氨氧化反应的能力,即其可将NH4+-N作为底物进行氧化产能,并可获得类型迥异的氧化产物(如NOx−-N或气态氮化合物等)。由此可推测,在特定的实验条件下,电活性氨氧化生物膜应可通过电极氨氧化作用实现BES中NH4+-N的转化和NO2−-N的稳定积累,而如能将此技术应用于前述生物脱氮新工艺,则可弥补这些工艺在运行时存在的短程硝化作用难以实现且稳定性差的缺陷,另还具有操作简单、无需曝气且不会产生二次污染等优势。
目前关于采用生物电化学技术实现常温下城镇生活污水短程硝化的研究尚不多见,如何提高反应装置中电极氨氧化的作用强度仍需探究,相应条件下NH4+-N的氧化产物类型亦不明晰。本研究以序批式膜生物反应器(SBBR)为实验装置,对其施加电化学措施后置于常温下处理城镇生活污水,探究了系统的运行性能及其微生物特性。期间,通过调控外加阳极电势考察了系统中NH4+-N的转化效果及NO2−-N的累积规律,确定出较佳的阳极电势范围;而后在恒定最佳阳极电势的前提下探究了系统在启动及稳定运行阶段的氨氮转化性能、NO2−-N累积水平及微生物群落结构变化。期望通过此研究,探寻出一条可实现污水中NH4+-N氧化与NO2−-N稳定积累的新途径,为新型生物脱氮工艺的研发及应用提供参考。
生物电化学措施下SBBR中的亚硝酸盐累积性能及微生物学特征
Accumulation performances of nitrite and associated microbiological characteristics in a sequencing batch biofilm reactor assisted by bioelectrochemical technology
-
摘要: 针对常温下生活污水短程硝化难以实现且稳定性差的难题,探究了生物电化学措施对序批式生物膜反应器(SBBR)中NO2−-N的累积性能及微生物学特征的影响。对SBBR施加生物电化学措施后,通过调控外加电极电势可实现其中电极氨氧化作用的发生及强化,且不同的外加阳极电势会显著影响系统中NH4+-N的转化效果、氧化产物类型及菌群结构。随着外加阳极电势由0.00增至0.50 V,SBBR中电极氨氧化作用的强度逐步提高,系统的NH4+-N氧化效率(AOE)与NO2−-N累积效率(NiAE)分别增至(97.07±1.20)%和(92.79±2.12)%;当外加阳极电势≥0.80 V后,SBBR中NH4+-N的氧化产物因工作电极上的析氧反应转而以NO3−-N为主,电极氨氧化作用的强度因电势不断升高而受到抑制,系统的AOE随之恶化。将外加阳极电势恒定为0.50 V,生物电化学强化型SBBR在常温下处理生活污水时可取得理想的NH4+-N转化效率(AOE=(99.33±0.11)%)与较高水平的亚硝酸盐累积量(NiAE=(88.08±2.07)%),此时系统中的电极氨氧化作用可得到较大程度的强化,其电活性生物膜中的优势菌属包括Nitrosomonas(33.54%)、Geobacter(15.24%)和Empodebacter(16.88%),三者在NH4+-N厌氧氧化过程中起关键作用。Abstract: Considering the difficulties of achievement and stability of partial nitrification when treating domestic sewage at ambient temperature, the experiments were conducted to explore the effects of bioelectrochemical assisted approach on nitrite accumulation performances and associated microbiological characteristics in a sequencing batch biofilm reactor (SBBR). When SBBR was assisted by bioelectrochemical technology, the regulation of the electrode potential could realize the cccurrence and enhancement of the electrode dependent ammonium oxidation process. Further, the different anode potential levels could significantly affect the transformation performances and oxidation product types of ammonium in the system, as well as the associated microbial community structures. As the applied anode potential increased from 0.00 to 0.50 V, the strength of the electrode dependent ammonium oxidation process increased gradually in the SBBR, and the ammonia oxidation efficiency (AOE) and nitrite accumulation efficiency (NiAE) of the system increased to (97.07±1.20)% and (92.79±2.12)%, respectively. As the applied anode potential was higher than 0.80 V, the products of ammonium oxidation in SBBR mainly changed into nitrate owing to occurrence of oxygen evolution reaction on the working electrode. Moreover, the electrode dependent ammonium oxidation process began to be inhibited in the system due to the increased anode potential levels, deteriorating the AOE. Regarding to the bioelectrochemical assisted SBBR operating with the applied anode potential of 0.50 V, ideal ammonia oxidation effect [AOE=(99.33±0.11)%] and high level of nitrite accumulation amount [NiAE=(88.08±2.07)%] could be achieved when the system was used to treat domestic sewage at ambient temperature. Correspondingly, the electrode dependent ammonium oxidation process could be highly strengthened in the reactor, Nitrosomonas (the relative abundance of 33.54%), Geobacter (the relative abundance of 15.24%) and Empodebacter (the relative abundance of 16.88%) were the three dominant bacterial genera in the electroactive biofilm, which played key roles in the process of anaerobic ammonia oxidation.
-
[1] CUI B, YANG Q, LIU X, et al. The effect of dissolved oxygen concentration on long-term stability of partial nitrification process[J]. Journal of Environmental Sciences, 2020, 90: 343-351. doi: 10.1016/j.jes.2019.12.012 [2] LIU C, YU D, WANG Y, et al. A novel control strategy for the partial nitrification and anammox process (PN/A) of immobilized particles: Using salinity as a factor[J]. Bioresource Technology, 2020, 302: 122864. doi: 10.1016/j.biortech.2020.122864 [3] CHEN H, TU Z, WU S, et al. Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment[J]. Chemosphere, 2021, 278: 130436. doi: 10.1016/j.chemosphere.2021.130436 [4] LIU X, KIM M, NAKHLA G, et al. Partial nitrification-reactor configurations, and operational conditions: Performance analysis[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103984. doi: 10.1016/j.jece.2020.103984 [5] GE S, WANG S, YANG X, et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review[J]. Chemosphere, 2015, 140: 85-98. doi: 10.1016/j.chemosphere.2015.02.004 [6] JARAMILLO F, ORCHARD M, MUNOZ C, et al. Advanced strategies to improve nitrification process in sequencing batch reactors: A review[J]. Journal of Environmental Management, 2018, 218: 154-164. [7] 卞伟, 李军, 王盟, 等. 不同温度下溶解氧对短程硝化的影响及相关研究[J]. 中国给水排水, 2017, 33(7): 84-88. [8] SCHMIDT I, BOCK E. Anaerobic ammonia oxidation by cell-free extracts of Nitrosomonas europaea[J]. Antonie Van Leeuwenhoek, 1998, 73: 271-278. doi: 10.1023/A:1001572121053 [9] HOU M, XU R, LIN Z, et al. Vertical characteristics of anaerobic oxidation of ammonium (anammox) in a coastal saline-alkali field[J]. Soil and Tillage Research, 2020, 198: 104531. doi: 10.1016/j.still.2019.104531 [10] YANG W, WEBER K, SILVER W. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5: 538-541. doi: 10.1038/ngeo1530 [11] GUO Q, HU H, SHI Z, et al. Towards simultaneously removing nitrogen and sulfur by a novel process: Anammox and autotrophic desulfurization-denitrification (AADD)[J]. Chemical Engineering Journal, 2016, 297: 207-216. doi: 10.1016/j.cej.2016.03.138 [12] SCHRODER U, HARNISCH F, ANGENENT L. Microbial electrochemistry and technology: Terminology and classification[J]. Energy & Environmental Science, 2015, 8: 513-519. [13] MIN B, KIM J, OH S, et al. Electricity generation from swine wastewater using microbial fuel cells[J]. Water Research, 2005, 39: 4961-4968. doi: 10.1016/j.watres.2005.09.039 [14] HE Z, KAN J, WANG Y, et al. Electricity production coupled to ammonium in a microbial fuel cell[J]. Environmental Science and Technology, 2009, 43: 3391-3397. doi: 10.1021/es803492c [15] QU B, FAN B, ZHU S, et al. Anaerobic ammonium oxidation with an anode as the electron acceptor[J]. Environmental Microbiology Reports, 2014, 6: 100-105. doi: 10.1111/1758-2229.12113 [16] 李建, 占国强, 王娟, 等. 生物电解池氨氧化脱氮产能[J]. 应用与环境生物学报, 2014, 20(6): 1058-1062. [17] VILAJELIU-PONS A, KOCH C, BALAGUER M, et al. Microbial electricity driven anoxic ammonium removal[J]. Water Research, 2018, 130: 168-175. doi: 10.1016/j.watres.2017.11.059 [18] 康岱, 崔梦瑶, 杨暖, 等. 电极电势调控对氨氧化脱氮与生物膜电活性的影响[J]. 应用与环境生物学报, 2020, 26(5): 1268-1274. [19] 国家环境保护总局. 水和废水监测分析方法[J]. 北京:中国环境科学出版社, 2002: 227-285. [20] 何丹, 张尔翼, 杨祖洁, 等. 甲烷生物燃料电池的产电影响因素及机制研究[J]. 环境科学学报, 2021, 41(9): 3446-3456. [21] ZHI W, YUAN L, JI G, et al. Enhanced long-term nitrogen removal and its quantitative molecular mechanism in tidal flow constructed wetlands[J]. Environmental Science & Technology, 2015, 49: 4575-4583. [22] 何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773. [23] HERRON J A, KIM J, UPADHYE A A, et al. A general framework for the assessment of solar fuel technologies[J]. Energy & Environmental Science, 2014, 8(1): 126-157. [24] 高彬, 袁林江, 李宗伟. 阳极电势对MFC中产电的影响[J]. 环境工程学报, 2014, 8(11): 4774-4781. [25] 蒋沁芮, 杨暖, 吴亭亭, 等. 生物电化学脱氮技术研究进展[J]. 应用与环境生物学报, 2018, 24(2): 408-414. [26] 王梅香, 赵伟华, 王淑莹, 等. A2N2系统反硝化除磷性能的优化及稳定运行[J]. 中国环境科学, 2016, 36(11): 3311-3320. doi: 10.3969/j.issn.1000-6923.2016.11.014 [27] 张铃敏, 常青龙, 史勤, 等. CANON工艺短程硝化恢复调控及微生物种群结构变化[J]. 中国环境科学, 2019, 39(6): 2354-2360. doi: 10.3969/j.issn.1000-6923.2019.06.015 [28] SUN N, GE C, AHMAD H A, et al. Realization of microbial community stratification for single-stage nitrogen removal in a sequencing batch biofilter granular reactor[J]. Bioresource Technology, 2017, 241: 681-691. doi: 10.1016/j.biortech.2017.05.203 [29] VAL DEL RIO A, CAMPOS J L, DA SILVA C, et al. Determination of the intrinsic kinetic parameters of ammonia-oxidizing and nitrite-oxidizing bacteria in granular and flocculent sludge[J]. Separation and Purification Technology, 2019, 213: 571-577. doi: 10.1016/j.seppur.2018.12.048 [30] LIU Y, LIU W, LI Y, et al. Layered inoculation of anaerobic digestion and anammox granular sludges for fast start-up of an anammox reactor[J]. Bioresource Technology, 2021, 339: 125573. doi: 10.1016/j.biortech.2021.125573 [31] 张冰, 吴林蔚, 文湘华. 全国城市污水处理厂中微生物群落的溯源分析[J]. 环境科学, 2019, 40(8): 3699-3705. [32] 韩文杰, 吴迪, 周家中, 等. CANON生物膜载体储存及活性恢复研究[J]. 中国环境科学, 2020, 40(5): 2062-2072. doi: 10.3969/j.issn.1000-6923.2020.05.024 [33] 齐泽坤, 王建芳, 钱飞跃, 等. 全程自养颗粒污泥快速启动及混合营养型脱氮性能分析[J]. 环境科学, 2020, 41(10): 4653-4660. [34] BOCK E, WAGNER M. Oxidation of inorganic nitrogen compounds as an energy source[J]. Prokaryotes, 2006, 2: 457-495. [35] BEAUMONT H, HOMMES N G, SAYAVEDRA-SOTO L A, et al. Nitrite reductase of Nitrosomonas europaea is not essential for production of gaseous nitrogen oxides and confers tolerance to nitrite[J]. Journal of Bacteriology, 2002, 184(9): 2557-2560. doi: 10.1128/JB.184.9.2557-2560.2002 [36] JOOSTE P J, HUGO C J. The taxonomy, ecology and cultivation of bacterial genera belonging to the family Flavobacteriaceae[J]. International Journal of Food Microbiology, 1999, 53(2-3): 81-94. doi: 10.1016/S0168-1605(99)00162-2 [37] 张玉龙, 陈雪丽, 吴云当. 电子穿梭体及其介导的环境与地球化学过程研究进展[J]. 生态环境学报, 2021, 30(1): 213-222. [38] MAHADEVAN R, BOND D R, BUTLER J E, et al. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling[J]. Applied and Environmental Microbiology, 2006, 72(2): 1558-1568. doi: 10.1128/AEM.72.2.1558-1568.2006 [39] FRANCIS C A, BEMAN J M, KUYPERS M M M. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation[J]. ISME Journal, 2007, 1: 19-27. doi: 10.1038/ismej.2007.8 [40] 史文超, 桂梦瑶, 杜俊逸, 等. 典型微塑料对好氧反硝化菌群脱氮特性及反硝化相关基因的影响[J]. 环境工程学报, 2021, 15(4): 1333-1343. doi: 10.12030/j.cjee.202009015