-
厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)是一种公认的经济有效的污水脱氮工艺。该工艺比传统的硝化-反硝化工艺可节约60%的氧气需求和100%的有机碳源,并且污泥产量和温室气体排放大大减少[1-2]。然而,功能菌厌氧氨氧化菌(anammox bacteria,AAOB)由于生长速度慢,倍增时间长并且容易随反应器出水而流失,导致ANAMMOX工艺启动期较长,故影响了该工艺的推广应用[3]。为此,研究者采用各种方法缩短ANAMMOX反应器的启动时间。为加强体系中细菌的滞留效果,经常采取添加载体或者设计合适的反应器的方法[4-6]。例如,附着式生长的移动床生物膜反应器(moving bed biofilm reactor,MBBR)可以创建一个稳定的系统[7-8]。生物滤池同样具有良好的生物截留能力[9]。刘雪娇等[10]采用生物滤池反应器,45 d 即成功启动了ANAMMOX反应,总氮容积去除速率(nitrogen removal rate,NRR)可达到1.41 kg·(m3·d)−1
此外,选择合适的接种污泥亦可加快ANAMMOX启动[11-12]。尽管现有研究证明,常规污泥(活性污泥、厌氧消化污泥、反硝化污泥和硝化污泥)在适当的条件下经过驯化培养可以启动ANAMMOX反应。但常规污泥中AAOB数量较少,导致培养过程耗时较长[1]。接种成熟的厌氧氨氧化颗粒污泥(anammox granule sludge, AnGS)是实现ANAMMOX快速启动的捷径[13-14]。LIU等[11]将厌氧消化和AnGS分层接种,缩短了细胞裂解期和滞后期,实现了反应器快速启动。TANG等[15]通过加入少量ANAMMOX污泥启动了ANAMMOX中试反应器。实验结果表明,ANAMMOX污泥的添加促进了反应器内AAOB的代谢和活性的表达。具体来说,这归因于AAOB之间存在的群体感应(quorum sensing,QS)现象[16]。
细菌QS由分泌的化学信号组成,当他们积累到一定水平时,调节特定基因的激活和转录[17]。例如,在ANAMMOX过程中,N-酰基高丝氨酸内酯(N-acyl-homoserine lactones,AHLs)调节的QS参与了ANAMMOX系统的细菌活性、基因表达和代谢途径[18]。一方面,细菌可以产生信号分子并将他们释放到周围的环境中[19]。更重要的是,外源微量信号分子被证明可以通过诱导AAOB内源信号分子的产生,进一步激活AAOB的功能表达[16]。TANG等[16]证实了ANAMMOX反应器上清液中存在AHLs,其中包括C6-HSL、C8-HSL和C12-HSL。这意味着,除了采用外围技术手段营造更利于AAOB生长的环境,利用AAOB的QS机制,通过外加ANAMMOX上清液产生的AHLs诱导AAOB基因表达,从而提高AAOB代谢活性,是加速AAOB生长的直接策略。
基于上述考虑,本研究构建了两级ANAMMOX串联污泥系统,将一级反应器(R1)出水引入二级反应器(R2)。一方面有效利用R1随出水流失的ANAMMOX污泥,另一方面获取R1上清液有效成分,以通过简单的操作,实现后置反应器R2的快速启动;通过考察启动过程中的脱氮性能、污泥理化性质和菌群结构特征,以验证两级串联启动ANAMMOX的可行性。最后,分析了快速启动过程的相关机理,以期为ANAMMOX反应器的快速启动提供参考。
两级ANAMMOX串联快速启动后置反应器的性能及机理
Performance and mechanism analysis of two-stage ANAMMOX in series to realize fast start-up of post reactor
-
摘要: 外源添加酰基高丝氨酸内酯类信号分子(AHLs)可以提高厌氧氨氧化菌(AAOB)的活性,有助于厌氧氨氧化(ANAMMOX)的快速启动,然而,AHLs的获取会增加操作成本。基于此,本研究构建了两级ANAMMOX串联反应器,以充分利用一级反应器(R1)出水有效成分实现后置反应器(R2)的快速启动。以R1的出水为进水,并逐渐过渡到以R1出水上清液和合成废水为进水的策略运行R2;通过脱氮性能、污泥特性和微生物群落变化来验证该策略的可行性,并进行了相关的机理分析。结果表明,R2在第56天实现了快速启动,运行90 d后,在总氮容积负荷为0.6~0.7 kg·(m3·d)-1时,总氮去除率达到93%以上,显著高于直接以合成污水启动的对照组(R3,61%)。这可归因于R1流失污泥为R2提供了稳定的生物量补充,并且其上清液包含的群体感应信号分子促进了R2中AAOB的活性提高。高通量测序结果表明,R1出水引入的有机物导致R2群落多样性升高,反硝化菌等异养菌相对丰度增加,ANAMMOX功能菌Candidatus Brocadia占比下降,然而,与R1相比,R2物质运输和代谢相关功能基因表达水平上调。以上结果说明,通过两级ANAMMOX串联实现后置反应器的快速启动是可行的。
-
关键词:
- 厌氧氨氧化(ANAMMOX) /
- 两级串联 /
- 快速启动 /
- 群体感应 /
- 微生物群落
Abstract: Exogenous addition of acylhigh serine lactones (AHLs) can improve the activity of anaerobic ammonia oxidation bacteria (AAOB), which is conducive to the rapid start-up of anaerobic ammonia oxidation (ANAMMOX). However, the acquisition of AHLs increases the operating cost. Based on this, a two-stage ANAMMOX series reactor was constructed in this study to make full use of the effluent active components of the primary reactor (R1) to realize the rapid start-up of the post-reactor (R2). In the experiment, R1 effluent was used as the influent, and gradually transferred to the R1 effluent clear liquid and synthetic wastewater as the influent. The feasibility of the strategy was verified by nitrogen removal performance, sludge characteristics and microbial community changes, and the relevant mechanism was analyzed. The results showed that R2 achieved rapid start-up on the 56th day, its total nitrogen volume load was 0.6-0.7 kg·(m3·d)-1 after operation for 90 days, and its total nitrogen removal efficiency could reach higher than 93%, which was significantly higher than that of the control group (R3, 61%) started with synthetic sewage directly. This was attributed to the fact that the sludge lost from R1 provided a stable biomass supplement for R2, and the quorum-sensing signal molecules contained in its supernatant promoted the activity of AAOB in R2. High-throughput sequencing results showed that the organic matter introduced into R1 effluent led to an increase in R2 community diversity and the proportion of heterotrophic bacteria such as denitrification, and a decrease in the proportion of ANAMMOX functional bacteria Candidatus Brocadia. However, compared with R1, the expression levels of transport and metabolity-related functional genes in R2 were up-regulated. These results indicate that it is feasible to realize the rapid start-up of the post-reactor through two-stage ANAMMOX series.-
Key words:
- anaerobic ammonia oxidation (ANAMMOX) /
- two-stage series /
- quick start-up /
- quorum sensing /
- microbiome
-
表 1 R2的运行条件及进水特征
Table 1. Operating conditions and inflow characteristics of R2
运行阶段 时间/d 进水来源 NH4+−N/
(mg·L−1)NO2−−N/
(mg·L−1)NO3−−N/
(mg·L−1)COD/
(mg·L−1)DO/
(mg·L−1)pH HRT/h NLR/
(kg·(m3·d)−1)Ⅰ 1~30 R1出水 40~55 45~65 16~25 40~70 <0.2 7.77~7.93 5 0.45~0.58 Ⅱ 31~60 R1出水上清液 40~55 45~65 16~25 40~70 <0.6 7.65~7.75 5/4 0.49~0.70 Ⅲ 61~90 合成废水 40~55 45~65 1.5~3.5 — 3~5 7.65~7.75 4 0.60~0.70 表 2 ANAMMOX污泥菌群的多样性指数变化
Table 2. Diversity index changes of ANAMMOX sludge microbial community
反应器 序列数 OTUs ACE指数 Chao1指数 Shannon指数 R1 32 366 845 1 037.31 963.21 3.73 R2 35 501 983 1 098.51 1 042.12 4.36 -
[1] CHEN H, HU H Y, CHEN Q Q, et al. Successful start-up of the anammox process: Influence of the seeding strategy on performance and granule properties[J]. Bioresource Technology, 2016, 211: 594-602. doi: 10.1016/j.biortech.2016.03.139 [2] ZEKKER I, RIKMANN E, TENNO T, et al. Anammox bacteria enrichment and phylogenic analysis in moving bed biofilm reactors[J]. Environmental Engineering Science, 2012, 29: 946-950. doi: 10.1089/ees.2011.0146 [3] KARTAL B, NIFTRIK L V, KELTJENS J T, et al. Anammox-growth physiology, cell biology and metabolism[J]. Advances in Microbial Physiology, 2012, 60(60): 211-262. [4] CHEN W, CHEN S, HU F, et al. A novel anammox reactor with a nitrogen gas circulation: Performance, granule size, activity, and microbial community[J]. Environmental Science and Pollution Research, 2020, 27(15): 1-11. [5] TAO Y, GAO D W, FU Y, et al. Impact of reactor configuration on anammox process start-up: MBR versus SBR[J]. Bioresource Technology, 2012, 104(1): 73-80. [6] ADAMS M, XIE J X, CHANG Y F, et al. Start-up of anammox systems with different biochar amendment: Process characteristics and microbial community[J]. Science of the Total Environment, 2021, 790: 148242. doi: 10.1016/j.scitotenv.2021.148242 [7] KOWALSKI M S, DEVLIN T R, Oleszkiewicz J A. Start-up and long-term performance of anammox moving bed biofilm reactor seeded with granular biomass[J]. Chemosphere, 2018, 200: 481-486. doi: 10.1016/j.chemosphere.2018.02.130 [8] LIU Y, NIU Q G, WANG S P, et al. Upgrading of the symbiosis of Nitrosomanas and anammox bacteria in a novel single-stage partial nitritation-anammox system: Nitrogen removal potential and Microbial characterization[J]. Bioresource Technology, 2017, 244: 463-472. doi: 10.1016/j.biortech.2017.07.156 [9] JIANG H, LIU G H, Ma Y, et al. A pilot-scale study on start-up and stable operation of mainstream partial nitrification-anammox biofilter process based on online pH-DO linkage control[J]. Chemical Engineering Journal, 2018, 350: 1035-1042. doi: 10.1016/j.cej.2018.06.007 [10] 刘雪娇, 田智勇, 杨宏, 等. 厌氧氨氧化(ANAMMOX)生物滤池反应器的启动特性[J]. 环境工程学报, 2012, 6(12): 4299-4304. [11] LIU Y, LIU W, LI Y Y, et al. Layered inoculation of anaerobic digestion and anammox granular sludges for fast start-up of an anammox reactor[J]. Bioresource Technology, 2021, 339: 125573. doi: 10.1016/j.biortech.2021.125573 [12] CHEN J B, ZHOU X, CAO X W, et al. Optimizing anammox capacity for weak wastewater in an AnSBBR using aerobic activated sludge as inoculation[J]. Journal of Environmental Management, 2020, 280: 111649. [13] WANG H, PENG L, MAO N, et al. Effects of Fe3+ on microbial communities shifts, functional genes expression and nitrogen transformation during the start-up of Anammox process[J]. Bioresource Technology, 2021, 320: 124326. doi: 10.1016/j.biortech.2020.124326 [14] YIN X, QIAO S, ZHOU J, et al. Fast start-up of the anammox process with addition of reduced graphene oxides[J]. Chemical Engineering Journal, 2016, 283: 160-166. doi: 10.1016/j.cej.2015.07.059 [15] TANG C J, ZHENG P, CHEN J W, et al. Start-up and process control of a pilot-scale Anammox bioreactor at ambient temperature[J]. Chinese Journal of Biotechnology, 2009, 25: 406-412. [16] TANG X, LIU S T, ZHANG Z T, et al. Identification of the release and effects of AHLs in anammox culture for bacteria communication, Chemical Engineering Journal, 2015, 273: 184-191. [17] PAPENFORT K, BASSLER B L. Quorum sensing signal–response systems in Gram-negative bacteria[J]. Nature Reviews Microbiology, 2016, 14: 576-588. doi: 10.1038/nrmicro.2016.89 [18] LIU L J, Xu S H, Wang F, et al. Effect of exogenous N-acyl-homoserine lactones on the anammox process at 15℃: Nitrogen removal performance, gene expression and metagenomics analysis[J]. Bioresource Technology, 2021, 314: 125760. [19] ZHANG H M, CAI L, ZHANG F, et al. Vacuum lyophilization preservation and rejuvenation performance of anammox bacteria[J]. Journal of Bioscience and Bioengineering, 2020, 129: 519-527. doi: 10.1016/j.jbiosc.2019.10.007 [20] 王晓曈, 杨宏. 基于粒径分化的厌氧氨氧化污泥性能与微生物多样性分析[J]. 环境科学, 2021, 42: 1930-1938. [21] 国家环境保护总局. 水和废水监测分析方法[J]. (第四版). 北京:中国环境科学出版社, 2002: 323-334. [22] MA C, JIN R C, YANG G F, et al. Impacts of transient salinity shock loads on Anammox process performance[J]. Bioresource Technology, 2012, 112: 124-130. doi: 10.1016/j.biortech.2012.02.122 [23] WANG X T, YANG H, SU Y, et al. Effects of sludge morphology on the anammox process: Analysis from the perspectives of performance, structure, and microbial community[J]. Chemosphere, 2022, 288: 132390. doi: 10.1016/j.chemosphere.2021.132390 [24] 张晶, 张林华, 姜冬冬, 等. 信号分子对高负荷UASB中ANAMMOX颗粒特性的影响[J]. 中国环境科学, 2018, 38: 10. [25] 唐崇俭. 厌氧氨氧化工艺特性与控制技术的研究[D]杭州: 浙江大学, 2011. [26] PENG Z H, LEI Y F, LIU Y M, et al. Fast start-up and reactivation of anammox process using polyurethane sponge[J]. Biochemical Engineering Journal, 2022, 177: 108249. doi: 10.1016/j.bej.2021.108249 [27] CHU Z R, WANG K, LI X K, et al. Microbial characterization of aggregates within a one-stage nitritation–anammox system using high-throughput amplicon sequencing[J]. Chemical Engineering Journal, 2015, 262: 41-48. doi: 10.1016/j.cej.2014.09.067 [28] CHEN Z, ZHANG X J, MA Y P, et al. Anammox biofilm system under the stress of Hg(II): Nitrogen removal performance, microbial community dynamic and resistance genes expression[J]. Journal of Hazardous Materials, 2020, 395: 122665. doi: 10.1016/j.jhazmat.2020.122665 [29] ZHANG X N, SUN Y L, MA F, et al. Role of soluble microbial product as an intermediate electron station linking C/N and nitrogen removal performance in sequencing batch reactor[J]. Environmental Research, 2020, 183: 109248. doi: 10.1016/j.envres.2020.109248 [30] BLACKBURNE R, YUAN Z, KELLER J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor[J]. Biodegradation, 2008, 19: 303-12. doi: 10.1007/s10532-007-9136-4 [31] STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology Biotechnology, 1998, 50: 589-596. doi: 10.1007/s002530051340 [32] BOLEIJ M, KLEIKAMP H, PABST M, et al. Decorating the anammox house: Sialic acids and sulfated glycosaminoglycans in the extracellular polymeric substances of anammox granular sludge[J]. Environmental Science &Technology, 54: 5218-5226. [33] ZHAO R, ZHANG H M, ZHANG F, et al. Fast start-up anammox process using Acyl-homoserine lactones (AHLs) containing supernatant[J]. Journal of Environmental Sciences, 2018, 65: 127-132. doi: 10.1016/j.jes.2017.03.025 [34] 李海玲, 李冬, 张杰, 等. 调控温度和沉降时间实现ANAMMOX颗粒快速启动及其稳定运行[J]. 环境科学, 2019, 40: 837-844. [35] WANG G P, ZHANG D, XU Y, et al. Comparing two start up strategies and the effect of temperature fluctuations on the performance of mainstream anammox reactors[J]. Chemosphere, 2018, 209: 632-639. doi: 10.1016/j.chemosphere.2018.06.134 [36] WANG S P, LIU YUAN, NIU Q G, et al. Nitrogen removal performance and loading capacity of a novel single-stage nitritation-anammox system with syntrophic micro-granules[J]. Bioresource Technology, 2017, 236: 119-128. doi: 10.1016/j.biortech.2017.03.164 [37] FENG Z L, WU Y H, SHI Y H, et al. Successful startup of one-stage partial nitritation and anammox system through cascade oxygen supply and potential ecological network analysis[J]. Science of the Total Environment, 2019, 696: 134065. doi: 10.1016/j.scitotenv.2019.134065 [38] LI A J, HOU B L, LI M X. Cell adhesion, ammonia removal and granulation of autotrophic nitrifying sludge facilitated by N-acyl-homoserine lactones[J]. Bioresource Technology, 2015, 196: 550-558. doi: 10.1016/j.biortech.2015.08.022 [39] LAWSON C E, WU S, BHATTACHARJEE A S, et al. Metabolic network analysis reveals microbial community interactions in anammox granules[J]. Nature Communications, 2017, 8: 15416. doi: 10.1038/ncomms15416 [40] LI X, TAO R J, TIAN, M J, et al. Recovery and dormancy of nitrogen removal characteristics in the pilot-scale denitrification-partial nitrification-Anammox process for landfill leachate treatment[J]. Journal of Environmental Management, 2021, 300: 113711. doi: 10.1016/j.jenvman.2021.113711 [41] DE COCKER P, BESSIERE Y, HERNANDEZ-RAQUET G, et al. Enrichment and adaptation yield high anammox conversion rates under low temperatures[J]. Bioresource Technology, 2018, 250: 505-512. doi: 10.1016/j.biortech.2017.11.079 [42] ZHAO Y P, LIU S F, Jiang B, et al. Genome-centered metagenomics analysis reveals the symbiotic organisms possessing ability to cross-feed with anammox bacteria in anammox consortia[J]. Environmental Science & Technology, 2018, 52: 11285-11296. [43] STROUS M, VAN GERVEN, KUENEN J G, et al. Effect of aerobic and microbial aerobic condition on anaerobic ammonium-oxiding (Anammox) sludge[J]. Applied and Environmental Microbiology, 1997, 63: 2446-2448. doi: 10.1128/aem.63.6.2446-2448.1997