-
膜生物反应器(membrane bioreactor, MBR)是将膜分离单元、生物处理单元相结合的一种新型水处理技术。因其具有占地面积小、安装灵活、污染物去除率高、出水质量好且运行效果稳定等特点,所以被广泛应用在污水处理中[1]。在MBR工艺中,膜分离单元主要采用平板膜和中空纤维膜2种形式,两者具有不同的特性[2]。为了结合2种形式的优点,新型MBR平板膜[3-7]的研制获得了国内外越来越多研究者的关注。其中,超薄平板膜的提出优化了常规平板膜的原有特性。如表1所示,超薄平板膜具有装填紧密、抗污染性好、运行维护简单等技术优势。然而,若使这种新型平板膜MBR在实际运行中得到高效稳定的应用,进而抑制膜污染问题,超薄平板膜MBR的曝气条件优化成为一个重要的研究方向。
计算流体动力学(computational fluid dynamics, CFD)是在经典流体动力学与数值计算方法的基础上,通过计算机数值计算和图像显示对相关物理现象所做的分析[8-9]。由于MBR中复杂多相流的流态特征与膜面剪切力分布密切相关[10],而且,在膜堆当中,仅通过实验难以对流体动力问题进行充分分析,故CFD已逐渐成为MBR中多相流准确模拟[11]的一种高精度、低成本的分析手段[12],其可以直观地表征MBR在不同曝气条件下的流态分布。然而,目前MBR曝气条件优化的研究重点是单一分析曝气量、曝气管布置形式等因素[13-15],主要是分析反应器纵向剖面流速分布,而对横向和纵向剖面流速分布的综合分析较少。此外,大多数研究未充分考虑不同曝气量下的膜流态分布的特性以及膜面颗粒沉积概率。
本研究采用CFD Fluent软件,以高精度的网格对气液两相流进行三维数值模拟[16],研究了超薄平板膜MBR在不同曝气条件下的膜污染行为机制,分析了在不同曝气量(10∶1、15∶1、20∶1)下,气泡对膜表面的冲刷能力以及膜片的抖动效果,量化膜片表面的气泡冲刷强度,确定了平板膜堆在曝气情况下的死区。最终,给出超薄平板膜MBR运行的最优曝气策略,以期在理论方面推动新型平板膜MBR的优化分析进程。
基于CFD的超薄平板膜MBR流态模拟及优化分析
CFD based-flow pattern simulation and optimization analysis of ultra-thin flat membrane MBR
-
摘要: 随着MBR的广泛应用,为控制膜污染导致高运行成本问题,优化新型平板膜MBR的曝气条件成为目前的一个研究热点。本研究通过使用CFD Fluent软件,结合多相流模型和湍流模型进行超薄平板膜MBR的高质量流态模拟,量化膜面剪切力,并从流场及膜污染角度分别对3种气水比(10∶1、15∶1和20∶1)工况下的MBR进行了优化分析,选择出超薄平板膜MBR的最优气水比。研究结果表明,膜片之间的流速分布均存在中间大、两侧小的不均匀性,且单个膜面剪切力分布与MBR流态特征密切相关,膜面颗粒沉积概率与剪切力均值呈负相关;对比了以0.1m·s-1为临界流速的不同曝气下的流场形态分布特性,并综合考虑曝气能耗及膜面冲刷,确定3种气水比中的最优值为15∶1。Abstract: With the wide application of MBR, the problem of high operating cost caused by membrane fouling is becoming more and more prominent. Therefore, optimizing the aeration conditions of new flat membrane MBR has become a research hot spot. In this study, the CFD Fluent software was used to simulate the high-quality flow pattern of the ultra-thin flat membrane MBR combined with the multi-phase flow model and the turbulence model. The membrane surface shear force was quantified, and the MBR operation at three gas-water ratios (10∶1, 15∶1 and 20∶1) was optimized and analyzed from the perspectives of flow field and membrane fouling, so as to select the optimal gas to water ratio of the ultra-thin flat membrane MBR. The results show that the flow velocity distribution between the membranes presented an uneven characteristic of large in the middle and small in both sides, and the shear force distribution on a single membrane surface was closely related to the flow pattern characteristics of MBR. The deposition probability of particles on the membrane surface was negatively correlated with the mean shear force. The flow field distribution characteristics under different aeration conditions with 0.1 m·s−1 critical flow rate were compared. Considering the aeration energy consumption and membrane surface erosion, the optimal gas-water ratio was determined as 15∶1 among above three ratios.
-
表 1 超薄平板膜与传统平板膜特性对比
Table 1. Comparison of characteristics between ultra-thin plate membrane and traditional plate membrane
膜类型 装填密度/(m2·m−3) 运行成本 单片厚度/mm 反冲洗 反洗过程是否抖动 常规平板膜 55 高 5~7 否 否 超薄平板膜 90 低 1.2 是 是 -
[1] PAWEL K, LANCE L, SIMOS M, et al. Membrane bioreactors: A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects[J]. Journal of Membrane Science, 2017, 527: 207-227. doi: 10.1016/j.memsci.2016.12.010 [2] 唐婷婷, 张园园, 张佳琳, 等. 新型MBR平板膜及膜堆研究进展[J]. 浙江化工, 2020, 51(10): 51-54. doi: 10.3969/j.issn.1006-4184.2020.10.011 [3] ZHANG J H, XIN Q P, LI X, et al. Mixed matrix membranes comprising amino silane-functionalized graphene oxide for enhanced CO2 separation[J]. Journal of Membrane Science, 2019, 570: 343-354. [4] DE S K, DOTREMONT C, GENNE I, et al. The use of nanoparticles as alternative pore former for the production of more sustainable polyether sulfone ultrafiltration membranes[J]. Journal of Membrane Science, 2014, 471: 168-178. doi: 10.1016/j.memsci.2014.06.061 [5] MAHOUNI A, YLITERVO P, DOYEN W, et al. Continuous bioethanol fermentation from wheal straw hydrolysate with high suspended solid content using an immersed flat sheet membrane bioreactor[J]. Bioresource Technology, 2017, 241: 296-308. doi: 10.1016/j.biortech.2017.05.125 [6] YIANG F, YING Z, YONG F, et al. Fabrication of reactive flat-sheet ceramic membranes for oxidative degradation of ofloxacin by peroxymonosulfate[J]. Journal of Membrane Science, 2020, 611: 118-302. [7] HE L, WANG Y, ZHOU T, et al. Enhanced ammonia resource recovery from wastewater using a novel flat sheet gas-permeable membrane[J]. Chemical Engineering Journal, 2020, 400(15): 125-338. [8] LIU X F, WANG Y, SHI Y R, et al. CFD modelling of uneven flows behavior in flat-sheet membrane bioreactors: From bubble generation to shear stress distribution[J]. Journal of Membrane Science, 2018, 570: 146-155. [9] 王福军. 计算流体动力学分析: CFD软件原理及应用[M]. 北京: 清华大学出版社, 2004. [10] 柳蒙蒙, 陈梅雪, 杨敏, 等. 基于CFD的大型膜生物反应器的设计及运行优化[J]. 环境工程学报, 2018, 12(2): 552-558. doi: 10.12030/j.cjee.201708022 [11] LIU M M, YANG M, CHEN M X, et al. Numerical optimization of membrane module design and operation for a full-scale submerged MBR by computational fluid dynamics[J]. Bioresource Technology, 2018, 269: 300-308. doi: 10.1016/j.biortech.2018.08.089 [12] 郁达伟, 魏源送, 郑祥, 等. 多相流和湍流模型对平板膜生物反应器模拟的影响[J]. 化工学报, 2014, 65(S1): 377-385. [13] YANG M, WEI Y, ZHENG X, et al. CFD simulation and optimization of membrane scouring and nitrogen removal for an airlift external circulation membrane bioreactor[J]. Bioresource Technology, 2016, 219: 566-575. doi: 10.1016/j.biortech.2016.07.139 [14] YANG M, YU D, LIU M, et al. Optimization of MBR hydrodynamics for cake layer fouling control through CFD simulation and RSM design[J]. Bioresource Technology, 2016, 227: 102-111. [15] WANG B, ZHANG K S, FIELD R W. Slug bubbling in flat sheet MBRs: Hydrodynamic optimization of membrane design variables through computational and experimental studies[J]. Journal of Membrane Science, 2017, 548: 165-175. [16] 张晴, 樊耀波, 魏源送, 等. 气升循环分体式MBR的CFD模拟及优化[J]. 膜科学与技术, 2013, 33(4): 107-119. doi: 10.3969/j.issn.1007-8924.2013.04.020 [17] BRAAK E, ALLIET M, SCHETRITE S, et al. Aeration and hydrodynamics in submerged membrane bioreactors[J]. Journal of Membrane Science, 2011, 379(1/2): 1-18. [18] 朱红钧. FLUENT 12 流体分析及仿真[M]. 北京: 清华大学出版社, 2014. [19] RADAEI E, LIU X F, TNG K H, et al. Numerical and experimental investigation of pulse bubble aeration with high packing density hollow-fibre MBRs[J]. Water Research, 2019, 160: 60-69. doi: 10.1016/j.watres.2019.05.056 [20] WANG Y, BRANNOCK M, COX S, et al. CFD simulations of membrane filtration zone in a submerged hollow fibre membrane bioreactor using a porous media approach[J]. Journal of Membrane Science, 2010, 363(1-2): 57-66. doi: 10.1016/j.memsci.2010.07.008 [21] WANG Z W, WU Z C, YIN X, et al. Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization[J]. Journal of Membrane Science, 2008, 325(1): 238-244. doi: 10.1016/j.memsci.2008.07.035 [22] LAY H T, CHEW J W. Critical flux of colloidal foulant in microfiltration: Effect of organic solvent[J]. Journal of Membrane Science. 2020, 616: 118-531. [23] LU X Y, LIU C, HU G Q, et al. Particle manipulations in non-Newtonian microfluidics: A review[J]. Journal of Colloid and Interface Science, 2017, 500: 182-201. doi: 10.1016/j.jcis.2017.04.019 [24] 张宇, 吴志超, 藏莉莉, 等. CFD在平板膜MBR设计及运行优化中的研究[J]. 环境工程学报, 2016, 10(2): 735-741. doi: 10.12030/j.cjee.20160235 [25] LIU X F, WANG Y, SHI Y R, et al. CFD modelling of uneven flows behaviour in flat-sheet membrane bioreactors: From bubble generation to shear stress distribution[J]. Journal of Membrane Science. 2019, 570-571: 144-455. [26] DU X, LIU X F, WANG Y, et al. Particle deposition on flat sheet membranes under bubbly and slug flow aeration in coagulation-microfiltration process: Effects of particle characteristic and shear stress[J]. Journal of Membrane Science, 2017, 541: 668-676. doi: 10.1016/j.memsci.2017.07.023 [27] LIU X F, WANG Y, WAITE T D, et al. Numerical simulations of impact of membrane module design variables on aeration patterns in membrane bioreactors[J]. Journal of Membrane Science, 2016, 520: 201-213. doi: 10.1016/j.memsci.2016.07.011