-
氟是人体内重要的微量元素之一,但当过量的氟在人体内累积时,会引起佝偻病、神经系统疾病、韧带骨化和氟斑牙等疾病[1]。据报道,全世界约有23个国家,超过2亿人正面临氟中毒威胁,其中印度和中国受污染影响程度最高[2-3]。在我国地下水体中,氟化物已经被广泛检出。根据《2019中国生态环境状况公报》,全国2 830处浅层地下水水质监测井中,Ⅳ~Ⅴ类占76.1%,其中氟化物是重要污染指标之一[4]。为保障饮水安全,世界卫生组织(WHO)规定饮用水中氟离子(F−)的最大质量浓度为1.5 mg∙L−1,我国《生活饮用水卫生标准》(GB 5749-2006)规定F−质量浓度上限为1.0 mg∙L−1[5]。因此,如何有效去除水体中的F−,将其浓度控制在安全饮用水范围内已成为全球亟待解决的问题。
目前,主要的除氟技术包括电凝聚法[6]、化学沉淀法[7]、膜分离法[8]、离子交换法[9]和吸附法[10]。其中,吸附法具有选择性强、去除率高、成本低、易操作且污泥产量少等优势,已成为当前除氟的研究热点[11-12]。在众多吸附剂中,生物炭因制作简单、成本低廉、环境友好等优点得到广泛应用。但生物炭表面带负电荷,对氟等阴离子作用力弱,因此通过引入金属离子提升生物炭的吸附性能受到国内外研究者的关注[13]。侯笛等[14]先制备生物炭,再采用浸渍法制得铁改性生物炭,其对氟的最大吸附容量为1.55 mg∙g−1。WANG等[15]先制得柚子皮生物炭,再利用La(NO3)3浸渍制得镧改性生物炭,其对氟的最大吸附容量为19.86 mg∙g−1。VENCES-ALVAREZ等[16]将商用活性炭浸渍于不同浓度La3+溶液中1~4 d,制得镧修饰活性炭,其对氟的最大吸附容量为9.96 mg∙g−1。不过,上述方法多为两步法,金属离子沉积于炭材料表面,且制备过程存在浸渍时间长、金属有效负载率低等缺点。
国家统计局已有数据显示,2020 年,我国花生总产量约为 1.8×107 t,同比增长达 2.7%。由于花生壳一类农耕废弃物在我国未形成完整产业链,导致大量的花生壳作为一般垃圾进行焚烧与填埋,增加生活垃圾产量的同时也造成了资源浪费[17]。本研究以花生壳为生物质原料,以LaCl3·7H2O为改性剂,采用简单的一步热解法制备了载镧生物炭(La-BC),在对制备条件进行优化的基础上,通过单因素实验研究了La-BC对F−的吸附性能及其在地下水体中的应用潜能,并结合SEM、XRD和FTIR表征结果,探讨了La-BC的除氟机理,以期为镧改性生物炭处理含氟地下水提供参考。
载镧生物炭对水体氟离子的去除性能
Characteristics of fluoride ion removal from waterbody by lanthanum-loaded biochar
-
摘要: 以花生壳为原料、LaCl3∙7H2O为镧前驱体,通过一步热解法制备了载镧生物炭(La-BC),确定了最佳制备条件,考察了溶液pH、吸附时间、La-BC投加量、F−初始质量浓度、共存离子等因素对La-BC吸附性能的影响,评估了La-BC在真实地下水中的应用潜能。结果表明:在pH为5~8时,La-BC表现出稳定的除氟性能。吸附过程符合准二级动力学和Langmuir等温线模型;在25 ℃和35 ℃下,La-BC的最大理论吸附容量分别为29.50 mg∙g−1与33.17 mg∙g−1。SO42-、HCO3−与CO32− 对吸附过程存在不同程度的影响,Cl−、NO3−和NH4+影响较小。加标地下水经酸化预处理后,La-BC对工业园区地下水和农村饮用井水均表现出优异的除氟性能。La-BC上的含镧物种包括La(OH)3、LaOCl、La(OH)2Cl以及少量La2(CO3)3和LaPO4,其中La(OH)2Cl为主要的除氟活性物种,F−主要通过静电作用和化学沉淀转化为LaF3沉淀去除。Abstract: In this work, lanthanum-loaded biochar (La-BC) was prepared by one-step pyrolysis method with peanut shells and LaCl3∙7H2O as precursors, and the optimal preparation conditions were determined. The effects of solution pH, adsorption time, La-BC dosage, F− initial concentration and coexisting ions on F− removal were tested. Meanwhile, the application potential of La-BC in real groundwater was evaluated. Results showed that La-BC exhibited a stable F− removal ability at pH 5~8, and the adsorption process conformed to the pseudo-second-order kinetics and Langmuir isotherm model. At 25 and 35 ℃, the maximum theoretical adsorption capacities of La-BC were 29.50 and 33.17 mg∙g−1, respectively. Except SO42−, HCO3− and CO32−, the influence of the coexisting anions including Cl−, NO3− and NH4+ was negligible. After acidification pretreatment of the spiked groundwater samples, La-BC showed an excellent defluorination performance for both industrial park groundwater and rural drinking well water. XRD results showed that the lanthanum-containing species on the La-BC included La(OH)3, LaOCl, La(OH)2Cl and a small amount of La2(CO3)3 and LaPO4. F− was removed mainly by reaction with La(OH)2Cl and converted to LaF3 by electrostatic interaction and chemical precipitation.
-
Key words:
- Lanthanum-loaded biochar /
- adsorption /
- F- /
- groundwater
-
表 1 真实地下水样背景值
Table 1. Background values of real groundwater samples
水体类别 序号 水体pH F−质量浓度/(mg∙L−1) 雅安名山区农村井水 1# 6.85 0.05 2# 6.77 0.05 成都市龙潭寺工业区地下水 3# 6.96 0.47 4# 6.95 0.39 表 2 La-BC吸附F-的动力学模型拟合参数
Table 2. Kinetic fitting parameters of F- adsorption on La-BC
准一级动力学模型 准二级动力学模型 qe,exp/(mg∙g−1) k1/(h−1) qe,cal/(mg∙g−1) R2 k2/(g∙(mg∙h)−1) qe,cal/(mg∙g−1) R2 29.85 2.411 25.69 0.814 0.154 27.20 0.914 表 3 F-在La-BC上的等温吸附模型拟合参数
Table 3. Langmuir and Freundlich fitting parameters of F- adsorption on La-BC
温度/ ℃ Langmuir模型 Freundlich模型 qmax,cal/(mg∙g−1) KL/(L∙mg−1) R2 KF/(mg∙L1/n)·(g∙mg1/n)−1 1/n R2 25 29.50 5.245 0.968 20.559 0.156 0.793 35 33.17 7.674 0.900 24.027 0.147 0.718 表 4 La-BC吸附F-的热力学参数
Table 4. Thermodynamic parameters related to F- adsorption on La-BC
∆G0/(kJ∙mol−1) ∆S0/(kJ∙(mol·k)−1) ∆H0/(kJ∙mol−1) 15 ºC 25 ºC 35 ºC 45 ºC −3.342 −3.921 −4.829 −5.129 0.062 5 14.636 -
[1] DONG S, WANG Y. Characterization and adsorption properties of a lanthanum-loaded magnetic cationic hydrogel composite for fluoride removal[J]. Water Research, 2016, 88: 852-860. doi: 10.1016/j.watres.2015.11.013 [2] WEI L, ZIETZSCHMANN F, RIETVELD L C, et al. Fluoride removal from water by Ca-Al-CO3 layered double hydroxides and simultaneous acidification[J]. Journal of Water Process Engineering, 2021, 40: 101957. doi: 10.1016/j.jwpe.2021.101957 [3] BISWAS G, KUMARI M, ADHIKARI K, et al. A critical review on occurrence of fluoride and its removal through adsorption with an emphasis on natural minerals[J]. Current Pollution Reports, 2017, 3(2): 104-119. doi: 10.1007/s40726-017-0054-8 [4] 中华人民共和国生态环境部. 2019中国生态环境状况公报[EB/OL]. [2020-06-02]. http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202006/P020200602509464172096.pdf. [5] HE Y, ZHANG L, AN X, et al. Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism[J]. Science of the Total Environment, 2019, 688: 184-198. doi: 10.1016/j.scitotenv.2019.06.175 [6] AOUDJ S, KHELIFA A, DROUICHE N, et al. Simultaneous removal of chromium(VI) and fluoride by electrocoagulation–electroflotation: Application of a hybrid Fe-Al anode - ScienceDirect[J]. Chemical Engineering Journal, 2015, 267: 153-162. doi: 10.1016/j.cej.2014.12.081 [7] GONG W X, QU J H, LIU R P, et al. Effect of aluminum fluoride complexation on fluoride removal by coagulation[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2012, 395(1): 88-93. [8] BOUHADJARS I, KOPP H, BRITHSCH P, et al. Solar powered nanofiltration for drinking water production from fluoride-containing groundwater: A pilot study towards developing a sustainable and low-cost treatment plant[J]. Journal of Environmental Management, 2019, 231: 1263-1269. doi: 10.1016/j.jenvman.2018.07.067 [9] DONG H, TANG H, SHI X, et al. Enhanced fluoride removal from water by nanosized cerium oxides impregnated porous polystyrene anion exchanger[J]. Chemosphere, 2022, 287: 131932. doi: 10.1016/j.chemosphere.2021.131932 [10] GAO Y, LI M, RU Y, et al. Fluoride removal from water by using micron zirconia/zeolite molecular sieve: Characterization and mechanism[J]. Groundwater for Sustainable Development, 2021, 13(6): 100567. [11] SELIMOGLU S, SIMSEK E B, BEKER U. Water defluoridation by alumina modified Turkey clinoptilolite: Equilibrium, kinetic models and experimental design approaches[J]. Water science & technology:Water supply, 2018, 1(18): 14-22. [12] PILLAI P, DHARASKAR S, KHALID M. Optimization of fluoride removal by Al doped ZnO nanoparticles using response surface methodology from groundwater[J]. Chemosphere, 2021, 284: 131317. doi: 10.1016/j.chemosphere.2021.131317 [13] LOGANATHAN P, VIGNESWARAN S, KANDASAMY J, et al. Defluoridation of drinking water using adsorption processes[J]. Journal of Hazardous Materials, 2013, 248-249(1): 1-19. [14] 侯笛, 卫栋慧, 董岁明, 等. 铁改性花生壳生物炭除氟性能及机理研究[J]. 应用化工, 2021, 50(02): 285-289. doi: 10.3969/j.issn.1671-3206.2021.02.003 [15] WANG J, CHEN N, FENG C, et al. Performance and mechanism of fluoride adsorption from groundwater by lanthanum-modified pomelo peel biochar[J]. Environmental Science and Pollution Research, 2018, 25(16): 15326-15335. doi: 10.1007/s11356-018-1727-6 [16] VENCES-ALVAREZ E, VELAZQUEZ-JIMENEZ L H, CHAZARO-RUIZ L F, et al. Fluoride removal in water by a hybrid adsorbent lanthanum-carbon[J]. Journal of Colloid and Interface Science, 2015, 455: 194-202. doi: 10.1016/j.jcis.2015.05.048 [17] 刘延湘, 黄彪, 张丽. 花生壳生物炭对水中重金属Cr6+、Cu2+的吸附研究[J]. 科学技术与工程, 2017, 17(13): 81-85. doi: 10.3969/j.issn.1671-1815.2017.13.015 [18] 王建国. 镧改性柚子皮生物炭除氟性能及机理研究[D]. 北京: 中国地质大学(北京), 2018. [19] 王博, 李梅, 张晓伟. 灼烧过程对稀土氧化物中氯元素的影响[J]. 有色金属(冶炼部分), 2017(8): 47-49. [20] PARK Y, GORMAN C, FORD E. Lanthanum carbonate nanofibers for phosphorus removal from water[J]. Journal of Materials Science, 2020, 55(12): 5008-5020. doi: 10.1007/s10853-019-04324-8 [21] QIU H, LIANG C, YU J, et al. Preferable phosphate sequestration by nano-La(III) (hydr)oxides modified wheat straw with excellent properties in regeneration[J]. Chemical Engineering Journal, 2017, 315: 345-354. doi: 10.1016/j.cej.2017.01.043 [22] HOSOKAWA S, IWAMOTO S, INOUE M. Solvothermal treatment of rare earth chloride hydrates[J]. Cheminform, 2006, 408: 529-532. [23] MOUSAVI-KAMAZANI M, ALIZADEH S, ANSARI F, et al. A controllable hydrothermal method to prepare La(OH)3 nanorods using new precursors[J]. Journal of Rare Earths, 2015, 33: 425-431. doi: 10.1016/S1002-0721(14)60436-1 [24] SRODA M, PALUSZKIEWICZ C. Spectroscopic study of the influence of LaF3 admixture on the crystallization and structure of borosilicate glass[J]. Journal of Molecular Structure, 2007, 834: 302-307. [25] YU Y, WANG C, GUO X, et al. Modification of carbon derived from Sargassum sp. by lanthanum for enhanced adsorption of fluoride[J]. Journal of Colloid & Interface Science, 2015, 441: 113-120. [26] PRABHU S M, ELANCHEZHIYAN S SD, LEE G, et al. Defluoridation of water by Tea-bag model using La3+ modified synthetic resin@chitosan biocomposite[J]. International Journal of Biological Macromolecules, 2016, 91: 1002-1009. doi: 10.1016/j.ijbiomac.2016.05.112 [27] JHA R, JHA U, DEY R K, et al. Fluoride sorption by zirconium (IV) loaded carboxylated orange peel[J]. Desalination & Water Treatment Science & Engineering, 2015, 53(8): 2144-2157. [28] BANSIWALl A, THAKRE D, LABHSHETWAR N, et al. Fluoride removal using lanthanum incorporated chitosan beads[J]. Colloids and Surfaces B:Biointerfaces, 2009, 74(1): 216-224. doi: 10.1016/j.colsurfb.2009.07.021 [29] HAN M, ZHANG J, HU Y, et al. Preparation of novel magnetic microspheres with the La and Ce-bimetal oxide shell for excellent adsorption of fluoride and phosphate from solution[J]. Journal of Chemical & Engineering Data, 2019, 64(8): 3641-3651.