-
大气降尘指空气动力学当量直径大于10 µm的颗粒物[1],其成分复杂,是多种污染物的载体,对衡量城市污染水平有重要的指示作用[2-3]。重金属作为降尘中污染组分之一,具有不可降解性、环境迁移性和生物累积性,不仅对生态环境构成潜在的危害,还会通过摄入、呼吸和皮肤接触等方式进入人体,进而危害人群健康[4-6]。李颖泉等[7]对兰州市主城区大气降尘和表层土壤重金属污染特征进行了评价,结果表明该地区大气降尘中的Cd 已构成严重污染。栾慧君等[8]对徐州北郊大气降尘重金属进行了污染特征分析与风险评价,结果表明Cu、Pb和Cd 存在中度以上污染,As 介于轻度和偏中度污染之间,且对儿童存在健康风险。
重金属污染评价方法主要有地累积指数法(Igeo) [9]、单因子污染指数法(SPI)[10]和潜在生态风险指数法(Er)等[11]。为对降尘中重金属的污染水平和生态风险进行综合评价,熊秋林等[12]基于上述3种方法提出了降尘重金属综合污染指数 (integrated pollution index of the dust heavy metal,IPI.dhm) 模型。
受体模型法是重金属源解析的常用方法,包括化学质量平衡法(chemical mass balance,CMB)[13]、绝对主成分分析-多元线性回归(absolute principal component score-multiple linear regression,APCS-MLR)[14]、正定矩阵因子分析法(positive matrix factorization,PMF)[15-16]和Unmix模型等[17-18]。以上方法通过从数据集中提取有意义的信息对样品进行分类,进而识别污染源。PMF模型是美国环保署推荐的源解析模型[15],在大气降尘重金属的源解析研究中得到了广泛应用[19-21]。APCS-MLR 基于PCA 演变而来,通过对原始数据进行标准化来计算因子的绝对真实得分( APCS) ,再结合多元线性回归模型计算因子对重金属的贡献率。APCS-MLR和PMF不需要预先测量的源配置文件,仅需要重金属浓度数据,比传统CMB 等受体模型更方便、高效。受限于模型算法,单一受体模型可能存在一定局限性。
近年来,邯郸市大气环境的研究主要集中于PM2.5/10的时空分布特征、源解析及风险评估等方面[22-25],而关于大气降尘中金属污染的研究较少。基于此,本研究选择PMF和APCS-MLR进行联合解析,相互比较验证,以提高源解析的准确性。邯郸市位于京津冀大气污染重点防治区域,市区内有钢铁冶炼厂和焦化厂等重污染企业,空气质量排名常年靠后。邯郸市机动车保有量持续增加,城市建设规模不断扩大,内源扬尘问题突出。因此,本研究以邯郸市主城区为研究对象,根据不同功能区布设3个采样点,采集2年的大气沉降样品,以分析10种金属元素的质量分数,并采用PMF和APCS-MLR两种受体模型对邯郸市大气降尘中金属来源进行解析,进而比较不同模型源解析的适用性,最终选择最适合本研究的受体模型,结合改进的降尘重金属综合污染指数模型综合定量评价不同污染源对大气降尘中8种重金属的污染程度,以期为控制地区重金属污染和大气颗粒污染物防治提供参考。
基于PMF和APCS-MLR模型的工业城市大气降尘金属源解析及综合污染评价
Source apportionment of metals in atmospheric deposition of a typical industrial city based on PMF and APCS-MLR and comprehensive pollution assessment
-
摘要: 为研究邯郸市区大气降尘的污染状况,在3个功能区逐月采集了2年的大气降尘样品,分析了降尘中Al、Fe、Cd、Cr、Cu、Mn、Ni、Pb、Zn和As等10种金属元素的质量分数,使用正定矩阵因子分解模型(PMF)和绝对主成分-多元线性回归模型(APCS-MLR)解析其来源,并采用大气降尘重金属综合污染指数(IPI.dhm)模型评估8种重金属(Cd、Cr、Cu、Mn、Ni、Pb、Zn和As)的污染水平,并结合最优源解析结果定量计算各源的污染贡献。结果表明:除Al外,邯郸市大气降尘中9种金属元素质量分数均超过河北省(A层)土壤背景值,不同功能区元素含量差异明显;PMF模型解析出5个源,分别为燃煤源、冶炼排放源、自然源、道路交通源和工业排放源;APCS-MLR解析出3个源,分别是工业与冶炼排放源,燃煤和交通混合源及自然源;PMF的解析结果更优。IPI.dhm结果显示,Cd、Cr、Zn和Pb为显著污染因子。基于源贡献的污染评估结果表明,5个源的贡献率依次为工业排放源(32.81%)>燃煤源(21.73%)>冶炼排放源(16.80%)>道路交通源(15.02%)>自然源(13.63%)。以上结果表明,该地区大气降尘重金属污染主要受工业和燃煤排放影响,建议优先控制工业排放和推进清洁能源以控制区域降尘重金属污染。本研究用到的大气降尘污染的来源解析与综合污染评价方法可为其他工业城市的提供参考。Abstract: In order to study the pollution situation of atmospheric deposition in Handan urban area, 3 sampling sites were set and 72 atmospheric deposition samples had been collected monthly from December 2017 to November 2019 by atmospheric dry and wet deposition autosampler. Contents of 10 metals (Al, Fe, Cd, Cr, Cu, Mn, Ni, Pb, Zn and As) in the atmospheric deposition samples were measured. The sources of metals were identified by positive matrix factorization model (PMF) and absolute principal component score-multiple linear regression receptor modeling (APCS-MLR). The results of two receptor models were compared. The pollution level of 8 heavy metals was assessed by the integrated pollution index of the dust heavy metal (IPI.dhm) model. The pollution contributions of each source were quantitatively calculated in combination with the source apportionment results of more suitable model. Results showed that except for Al, all 9 metals in the atmospheric deposition exceeded the corresponding soil background values for Hebei Province (A layer). 5 sources of metals in the atmospheric deposition were identified by PMF model: source, smelting emission source, natural source, transportation source and industrial emission source. 3 factors were identified by APCS-MLR: industrial smelter emission source, natural source, coal-burning and transportation mixed source. Better results of PMF were observed in this study. PMF were better than APCS-MLR. The result of IPI.dhm model showed that Cd, Cr, Zn and Pb were the significant pollution factors. Based on the pollution assessment result of source apportionment, the pollution contribution rates of the 5 sources were in order of industrial emission source (32.81%) > coal-burning source (21.73%) > smelting emission source (16.80%) > transportation source (15.02%) > natural source (13.63%). The study showed that the heavy metal pollution of atmospheric deposition in Handan urban area was mainly affected by industrial and coal-burning emissions. It is suggested that industrial emissions should be controlled priority and clean energy should be promoted, which could control the heavy metal pollution of atmospheric deposition in the area.
-
Key words:
- heavy metal /
- source apportionment /
- PMF /
- APCS-MLR /
- comprehensive pollution assessment
-
表 1 大气降尘中金属元素的质量分数
Table 1. Concentrations of metals in atmospheric deposition
数据种类 Al/% Fe/% Cd/
(mg·kg−1)Cr/
(mg·kg−1)Cu/
(mg·kg−1)Mn/
(mg·kg−1)Ni/
(mg·kg−1)Pb/
(mg·kg−1)Zn/
(mg·kg−1)As/
(mg·kg−1)高教区 3.04±
2.394.32±
0.965.07±
1.33101.94±
100.5894.86±
51.721 029.10±
236.1362.41±
42.12198.88±
123.681 031.83±
214.7733.83±
7.69生活区 4.06±
2.744.95±
1.896.85±
4.28143.95±
133.11106.79±
39.081 171.26±
381.2980.77±
55.59223.92±
118.201 190.32±
547.0939.81±
13.14工业区 3.51±
2.7313.55±
3.988.28±
3.81166.83±
116.93120.43±
112.501 576.92±
649.9873.24±
49.39249.11±
120.771 092.69±
395.0544.85±
6.613个区域
平均值3.53±
2.627.61±
4.966.73±
3.60137.57±
119.06107.35±
74.651 259.09±
506.6172.14±
9.23223.97±
20.971 104.95±
408.3939.51±
10.48河北省土
壤背景值6.72±
1.002.82±
0.690.06±
3.5765.40±
1.3321.00±
1.34592.00±
1.3028.70±
1.4620.50±
1.3671.90±
1.4912.80±
1.44注:表中所示数据为平均值±标准偏差;背景值为河北省主要土类(A层土壤)背景值。 表 2 邯郸市及国内外部分城市大气降尘中重金属质量分数
Table 2. Content of heavy metals in atmospheric deposition in Handan and some cities of China and abroad
mg·kg−1 地点 Cd Cr Cu Mn Ni Pb Zn As 数据来源 中国邯郸 6.74 137.58 107.36 1 259.10 72.14 223.97 1 104.95 39.50 本研究 中国徐州 1.15 111.52 162.09 — — 201.29 — 32.00 文献[8] 中国北京 2.00 128.30 144.90 — 51.50 93.50 572.20 — 文献[12] 中国焦作 8.11 68.90 68.07 — 40.22 157.15 1 809.60 35.47 文献[28] 中国安庆 2.98 128.70 134.10 — 55.40 128.90 640.00 63.90 文献[29] 中国鞍山 0.96 183.70 101.70 939.00 42.50 2080 597.00 12.19 文献[30] 中国泉州 2.81 125.40 122.70 1 061.00 84.83 256.40 975.00 — 文献[31] 中国重庆 1.59 72.68 — — 20.99 101.17 — — 文献[32] 俄罗斯莫斯科 0.30 3.70 7.30 390.00 3.70 0.70 56.00 0.30 文献[33] 伊朗伊斯法罕 0.98 37.20 67.00 — 53.40 96.30 400.30 50.60 文献[34] 加拿大渥太华 0.37 43.30 65.84 — 15.20 39.10 112.50 1.30 文献[35] 印度加尔各答 — 164 92 743 36 128 289 — 文献[36] 注:—表示缺少数据。 表 3 PMF和APCS-MLR适用性的比较
Table 3. Comparison of fitting degree of PMF and APCS-MLR
元素种类 实测值/(mg·kg−1) PMF APCS-MLR 估计值/(mg·kg−1) r2 E/M 估计值/(mg·kg−1) r2 E/M Al 35 378.31 35 378.31 1 1 32 548.05 0.87 0.92 Fe 76 086.62 76 086.62 1 1 67 717.09 0.92 0.89 Cd 6.74 6.23 0.75 0.92 6.87 0.90 1.02 Cr 137.58 137.18 0.99 0.98 132.08 0.91 0.96 Cu 107.36 88.52 0.88 0.82 85.89 0.77 0.80 Mn 1 259.10 1 259.06 0.99 1.00 1 158.37 0.92 0.92 Ni 72.14 73.36 0.82 1.02 69.25 0.89 0.96 Pb 223.97 221.63 0.94 0.99 230.69 0.94 1.03 Zn 1 104.95 1 082.02 0.85 0.98 950.26 0.79 0.86 As 39.50 38.01 0.63 0.96 30.42 0.69 0.77 表 4 不同功能区重金属综合污染指数
Table 4. Mean IPI.dhm of heavy metals in different functional area
IPI.dhm 高教区 生活区 工业区 平均值 Cd 3.01 3.01 3.01 3.01 Cr 1 1 1 1 Cu 0.36 0.36 0.3 0.34 Mn 0.13 0.11 0.15 0.13 Ni 0.18 0.17 0.11 0.15 Pb 0.63 0.6 0.58 0.6 Zn 0.75 0.71 0.63 0.7 As 0.37 0.3 0.28 0.32 -
[1] 刘杰, 高敏, 梁俊宁, 等. 陕西省某工业园区春季大气降尘重金属污染特征及评价[J]. 环境科学研究, 2019, 32(7): 1195-1203. [2] MANTA D S, ANGELONE M, BELLANCA A, et al. Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy[J]. Science of the Total Environment, 2002, 300(1/2/3): 229-243. doi: 10.1016/S0048-9697(02)00273-5 [3] VALLACK H W, SHILLITO D E. Suggested guidelines for deposited ambient dust[J]. Atmospheric Environment, 1998, 32(16): 2737-2744. doi: 10.1016/S1352-2310(98)00037-5 [4] ZHANG Y Y, JI X T, KU T T, et al. Heavy metals bound to fine particulate matter from Northern China induce season-dependent health risks: a study based on myocardial toxicity[J]. Environmental Pollution, 2016, 216: 380-390. doi: 10.1016/j.envpol.2016.05.072 [5] 周珂, 郭姝荃, 周新萌, 等. 武汉市降尘污染特征及影响因素[J]. 中国环境监测, 2016, 32(1): 58-63. doi: 10.3969/j.issn.1002-6002.2016.01.011 [6] DAI J R. Geochemical characteristics and pollution source identification of the near-surface atmosphere dust-fall in Jining City, Eastern China[J]. Agricultural Biotechnology, 2019, 8(1): 199-205. https://kns.cnki.net/KCMS/detail/detail. aspx?filename=AGBT201901048&dbname=CJFD&dbcode=CJFQhttps://oversea.cnki.net/KCMS/detail/detail.aspx?filename=AGBT201901048&dbname=CJFD&dbcode=CJFQ [7] 李颖泉, 赵保卫, 牛武江, 等. 兰州市主城区大气降尘和表层土壤重金属污染特征与评价[J]. 安全与环境学报, 2020, 20(4): 1440-1448. [8] 栾慧君, 塞古, 徐蕾, 等. 徐州北郊大气降尘重金属污染特征与风险评价[J]. 中国环境科学, 2020, 40(11): 4679-4687. doi: 10.3969/j.issn.1000-6923.2020.11.005 [9] MÜLLER G. Index of geoaccumulation in sediments of the Rhine River[J]. Geology Journal, 1969, 2: 108-118. [10] 肖作义, 赵鑫, 孟庆学, 等. 内蒙古某尾矿库土壤重金属污染健康风险评价与来源解析[J]. 有色金属工程, 2020, 10(12): 135-142. doi: 10.3969/j.issn.2095-1744.2020.12.019 [11] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [12] 熊秋林, 赵文吉, 李大军, 等. 北京冬季降尘重金属富集程度及综合污染评价[J]. 环境科学, 2018, 39(9): 4051-4059. [13] 黄国兰, 萧航, 陈春江, 等. 化学质量平衡法在水体污染物源解析中的应用[J]. 环境科学, 1999, 20(6): 14-17. doi: 10.13227/j.hjkx.1999.06.004 [14] THURSTON G D, SPENGLER J D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston[J]. Atmospheric Environment, 1985, 19(1): 9-25. doi: 10.1016/0004-6981(85)90132-5 [15] PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203 [16] GHOLIZADEH M H, MELESSE A M, REDDI L. Water quality assessment and apportionment of contamination sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida[J]. Science of the Total Environment, 2016, 566-567(10): 1552-1567. [17] ZHANG H X, CAI A Z, WANG X J, et al. Risk assessment and source apportionment of heavy metals in soils from Handan City[J]. Applied Sciences. 2021, 11(20): 9615. [18] 蔡昂祖, 张海霞, 王小剑, 等. Unmix模型污染源解析研究进展及应用前景[J]. 土壤通报, 2021, 52(3): 747-756. doi: 10.19336/j.cnki.trtb.2020081401 [19] 孙昂, 曹景丽, 王明仕, 等. 典型工业城市中小学降尘重金属风险评估和源解析研究[J]. 地球与环境, 2021, 49(6): 655-664. SUN A, CAO J L, WANG M S, et al. Risk assessment and source apportionment of heavy metals in dust fall in primary and secondary schools of a typical industrial city[J]. Earth and Environment, 2021, 49(6): 655-664.
[20] 杨新明, 钟雅琪, 李国锋, 等. 典型工业城市大气降尘中重金属分布特征及其来源解析--以济南市为例[J]. 环境化学, 2022, 41(2): 1-10. [21] YE L M, HUANG M J, ZHONG B Q, et al. Wet and dry deposition fluxes of heavy metals in Pearl River Delta Region (China): Characteristics, ecological risk assessment, and source apportionment[J]. Journal of Environmental Sciences, 2018, 70(8): 106-123. [22] YANG S, MA Y L, DUAN F K, et al. Characteristics and formation of typical winter haze in Handan, one of the most polluted cities in China[J]. Science of the Total Environment, 2018, 613/614: 1367-1375. doi: 10.1016/j.scitotenv.2017.08.033 [23] CAI A Z, ZHANG H X, WANG L T, et al. Source apportionment and health risk assessment of heavy metals in PM2.5 in Handan: a typical heavily polluted city in North China[J]. Atmosphere, 2021, 12(10): 1232. doi: 10.3390/atmos12101232 [24] WANG L T, WEI Z, YANG J, et al. The 2013 severe haze over southern Hebei, China: model evaluation, source apportionment, and policy implications[J]. Atmospheric Chemistry and Physics, 2014, 14(6): 3151-3173. doi: 10.5194/acp-14-3151-2014 [25] WANG L T, FU J S, WEI W, et al. How aerosol direct effects influence the source contributions to PM_2.5 concentrations over Southern Hebei, China in severe winter haze episodes[J]. Frontiers of Environmental Science & Engineering, 2018, 12(3): 1-13. doi: 10.1007/s11783-018-1014-2 [26] 林立, 王琳琳. 采用ICP-MS/MS对硒和砷检测的质谱干扰[J]. 分析试验室, 2016, 35(3): 344-348. doi: 10.13595/j.cnki.issn1000-0720.2016.0081 [27] 邯郸市人民政府. 邯郸市人民政府关于印发邯郸市精品钢材产业发展规划(2019-2025年)的通知[EB/OL]. https://www.hd.gov.cn/hdzfxxgk/gszbm/auto23692/202003/t20200318_1254763.html [28] 王明仕, 曹景丽, 李晗, 等. 焦作市采暖期降尘中重金属生态风险评价与源解析[J]. 生态环境学报, 2017, 26(5): 824-830. [29] 方文稳, 张丽, 叶生霞, 等. 安庆市降尘重金属的污染评价与健康风险评价[J]. 中国环境科学, 2015, 35(12): 3795-3803. doi: 10.3969/j.issn.1000-6923.2015.12.034 [30] 邢小茹, 薛生国, 张乃英, 等. 鞍山市大气尘和金属元素沉降通量及污染特征[J]. 中国环境监测, 2010, 26(2): 11-15. doi: 10.3969/j.issn.1002-6002.2010.02.003 [31] 张棕巍, 胡恭任, 于瑞莲, 等. 泉州市大气降尘中金属元素污染特征及来源解析[J]. 环境科学, 2016, 37(8): 2881-2888. [32] 张夏, 刘斌, 肖柏林, 等. 重庆主城大气降尘中重金属污染特征及评价[J]. 环境科学, 2020, 41(12): 5288-5294. [33] VERGEL K, ZINICOVSCAIA I, YUSHIN N, et al. Heavy metal atmospheric deposition study in Moscow region, Russia[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(3): 435-440. doi: 10.1007/s00128-019-02672-4 [34] NOROUZI S, KHADEMI H, AYOUBI S, et al. Seasonal and spatial variations in dust deposition rate and concentrations of dust-borne heavy metals, a case study from Isfahan, central Iran[J]. Atmospheric Pollution Research, 2017, 8(4): 686-699. doi: 10.1016/j.apr.2016.12.015 [35] RASMUSSEN P E, SUBRAMANIAN K S, JESSIMAN B J. A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada[J]. Science of the Total Environment, 2001, 267(1/2/3): 125-140. doi: 10.1016/S0048-9697(00)00775-0 [36] KOLAKKANDI V, SHARMA B, RANA A, et al. Spatially resolved distribution, sources and health risks of heavy metals in size-fractionated road dust from 57 sites across megacity Kolkata, India[J]. Science of the Total Environment, 2020, 705: 135805. doi: 10.1016/j.scitotenv.2019.135805 [37] DUAN J C, GUO S J, TAN J H, et al. Characteristics of atmospheric carbonyls during haze days in Beijing, China[J]. Atmospheric Research, 2012, 114/115: 17-27. doi: 10.1016/j.atmosres.2012.05.010 [38] 张银晓, 卢春颖, 张剑, 等. 民用燃煤排放细颗粒中金属元素排放特征及单颗粒分析[J]. 中国环境科学, 2018, 38(9): 3273-3279. doi: 10.3969/j.issn.1000-6923.2018.09.009 [39] ZANNONI D, VALOTTO G, VISIN F, et al. Sources and distribution of tracer elements in road dust: the Venice mainland case of study[J]. Journal of Geochemical Exploration, 2016, 166: 64-72. doi: 10.1016/j.gexplo.2016.04.007 [40] GE S, XU X, CHOW J C, et al. Emissions of air pollutants from household stoves: honeycomb coal versus coal cake[J]. Environmental Science & Technology, 2004, 38(17): 4612-4618. doi: 10.1021/es049942k [41] 邯郸市统计局. 邯郸统计年鉴. 2018[M]. 北京: 中国统计出版社. [42] XU S, TAO S. Coregionalization analysis of heavy metals in the surface soil of Inner Mongolia[J]. Science of the Total Environment, 2004, 320(1): 73-87. doi: 10.1016/S0048-9697(03)00450-9 [43] 邯郸市统计局. 邯郸统计年鉴. 2019[M]. 北京: 中国统计出版社. [44] 黄文, 王胜利. 兰州市采暖期和非采暖期大气降尘重金属的分布特征及来源[J]. 环境科学, 2022, 43(2): 597-607. doi: 10.13227/j.hjkx.202103222 [45] ZHANG C Y, LITAO WANG L, QI M Y, et al. Evolution of key chemical components in PM2.5 and potential formation mechanisms of serious haze events in Handan, China[J]. Aerosol and Air Quality Research, 2018, 18(7): 1545-1557. doi: 10.4209/aaqr.2017.10.0386 [46] LV J S. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils[J]. Environmental Pollution, 2019, 244: 72-83. doi: 10.1016/j.envpol.2018.09.147 [47] 刘玲玲, 安燕飞, 马瑾, 等. 基于UNMIX模型的北京城区公园土壤重金属源解析[J]. 环境科学研究, 2020, 33(12): 2856-2863. [48] FENG W L, GUO Z H, PENG C, et al. Atmospheric bulk deposition of heavy metal(loid)s in central South China: Fluxes, influencing factors and implication for paddy soils[J]. Journal of Hazardous Materials, 2019, 371: 634-642. doi: 10.1016/j.jhazmat.2019.02.090 [49] CAI K, LI C, NA S. Spatial distribution, pollution source, and health risk assessment of heavy metals in atmospheric depositions: a case study from the sustainable city of Shijiazhuang, China[J]. Atmosphere, 2019, 10(4): 222. doi: 10.3390/atmos10040222