-
随着江河湖库等自然水体内渔业资源的过度开发及生态环境保护措施的实施,加上人们对鱼类水产需求的快速上升形成的供需矛盾的上升,如何脱离江河湖库等自然水体进行高效率的陆基水产养殖已成为满足发展与保护的最优途径之一[1-2]。其中,高密度集约化的陆基水产养殖因其具有节水节能及占地面积小等优势,已成为当前不断快速推广的一种重要养殖模式[3]。但作为高密度高投入的人工圈养系统,长期大量饵料的使用导致养殖系统内残饵及排泄物污染远高于传统江河湖库等自然水体内的水产养殖,因而残饵及排泄物污染已成为严重制约高密度陆基水产养殖的重要瓶颈问题之一[4]。有研究[5]表明,水产养殖中所投饵料只有不到50%保留在养殖动物体内,其余很大一部分会残留在养殖水体中,使得养殖水体中氮磷含量增加而造成养殖区域环境水质的快速恶化,一方面不仅影响养殖对象的健康生长和产品质量,另一方面,该养殖模式下外排的大量高浓度污染物及由此产生的生态环境破坏问题甚至因远高于传统的塘库养殖而将严重威胁当前这一产业的可持续发展[6-7]。
目前,在物理、化学和物化联合等方法上对水产养殖废水的净化处理已有不少研究,但仍存在投入及运行成本较高、污泥二次污染严重及排水水质难以持续达标等系列问题[8-9]。人工湿地(constructed wetlands, CWs)由于其施工、操作和维护较为简单,可通过植物的吸收、基质的过滤吸附以及系统内微生物的硝化反硝化等作用从养殖废水中有效地去除氮磷等污染物[10]。但如何高效稳定地去除氮磷仍是人工湿地亟需解决的重要问题[11]。基于此,本研究根据高密度陆基水产养殖外排废水的NO3−-N、NO2−-N、NH4+-N、TN、TP等特征污染物组成及浓度,构建了“巨菌草(Pennisetum sinese)生态浮床单元-美人蕉(Canna indica L.)垂直流人工湿地单元-狐尾藻(Myriophyllum verticillatum L.)沉水植物深度净化池单元”三级不同类型湿地单元结合的复合人工湿地系统,研究了不同干湿交替时间下该系统对模拟高密度陆基水产养殖外排废水中氮磷的净化效果及其植物效应,揭示了系统内不同类型湿地单元植物根系和填料中微生物的群落结构特征,并进一步探索该系统污染物去除与微生物群落的关系。相关研究结果旨在为高密度陆基水产养殖水体的生态化净化、循环化使用、周边水体富营养化的预防以及高密度陆基水产养殖业的健康可持续发展提供参考。
复合人工湿地对陆基水产养殖废水中氮磷的净化及其微生物群落特征
Nitrogen and phosphorus purification from land-based aquaculture wastewater and microbial community characteristics of the combined constructed wetland
-
摘要: 高密度陆基水产养殖外排废水中的氮(N)、磷(P)浓度往往远高于传统的塘库养殖而对周边环境带来更大的压力。为探究复合人工湿地系统对陆基水产养殖外排废水中N、P的净化效果及其微生物群落特征,本文以“高效生态浮床单元-垂直流人工湿地单元-沉水植物池单元”三级不同类型湿地单元构成的复合人工湿地系统为研究对象,研究不同干湿交替时间下该系统对模拟高密度陆基水产养殖外排废水中N、P的净化效果,并揭示系统内各湿地单元植物根系和填料中微生物群落的结构特征。结果表明,复合人工湿地系统在不同干湿交替时间下对NO3−-N、NO2−-N、NH4+-N、TN、TP的平均去除率分别为99.04%~99.43%、98.72%~100%、93.89%~95.26%、92.23%~98.60%、56.85%~77.50%。各湿地单元植物中不同类型植物分析结果表明,高效生态浮床单元中巨菌草的根系活力、POD酶活性、生物量均明显优于垂直流人工湿地单元中的美人蕉和沉水植物池单元中的狐尾藻(P<0.05),且植物中N、P含量呈现沿流向逐级减少的趋势,与各湿地单元排水中的污染物浓度所呈现的逐级降低的规律相一致。各湿地单元N、P去除途径的分析结果表明,一级单元微生物作用(74.42%)和一级、二级单元填料吸附 (13.05%和38.70%) 分别是N和P元素的主要归趋途径。各湿地单元植物根系和填料中微生物群落分析结果表明,植物根系及填料微生物的共同优势菌门主要有Proteobacteria、Chloroflexi、Actinobacteria、Bacteroidetes。属水平上各级湿地单元存在的优势菌属存在明显差异,其中生态浮床单元优势菌属相对丰度最高,主要有Chloronema、unclassified_p__Chloroflexi、Candidatus_Competibacter等。基于FAPROTAX数据库功能预测结果表明,各湿地单元植物根系和填料中化能异养型(12.43%~27.19%)和好氧化能异养型(10.11%~26.46%)细菌功能群占优势,且氮循环相关功能的发现表明细菌在复合人工湿地系统除氮过程中起着关键作用。以上结果说明,经不同类型湿地单元功能菌群与湿地植物的协同作用,可使该系统对高密度陆基水产养殖外排废水中的特征污染物N、P具有较好的生态净化效果。Abstract: Compared with traditional pond aquaculture, the concentrations of nitrogen (N) and phosphorus (P) in the effluent of high-density land-based aquaculture are higher, which brings serious challenges to the surrounding environment. To explore the purification effect of N and P from land-based aquaculture wastewater and microbial community characteristics of combined constructed wetland, which was composed of high-efficient ecological floating bed unit - vertical flow constructed wetland unit - submerged plant pond unit, the purification effect of N and P in simulated high-density land-based aquaculture effluent at different dry-wet alternation times and the characteristics of microbial community structures in roots and fillers of each wetland unit were revealed. The results showed that the average removal rates of NO3−-N, NO2−-N, NH4+-N, TN and TP were 99.04%~99.43%, 98.72%~100%, 93.89%~95.26%, 92.23%~98.60% and 56.85%~77.50% by combined constructed wetland system at different dry and wet alternation times, respecively. Through the analysis of different types of plants in each wetland unit, the root activity, POD enzyme activity and biomass of Pennisetum sinese in the high-efficient ecological floating bed unit were significantly better than those of Canna indica L. in vertical flow constructed wetland and Myriophyllum verticillatum L. in submerged plants pond unit (p <0.05), respectively. In addition, the contents of N and P in plants gradually decreased along the flow direction, which was consistent with the law of pollutant concentrations in the drainage of each wetland unit. Through the analysis of the N and P removal pathways of each wetland unit, the microbial action (74.42%) of the primary unit was the main purification pathway of N, and the filler adsorption (13.05% and 38.70%) of the primary and secondary unit was the main N and P removal pathways. Through the analysis of microbial communities in plant roots and fillers of each wetland unit, the dominant bacterial at phylum level, such as Proteobacteria, Chloroflexi, Actinobacteria and Bacteroidetes, were concurrently discovered in plants root and filler microorganisms. However, the dominant bacteria at genus level in wetland units existed obvious differences, among them, the relative abundance of dominant bacteria genera (mainly Chloronema, unclassified_p__Chloroflexi, Candidatus_Competibacter etc.) in ecological floating bed units was the highest. Based on the FAPROTAX database function prediction, heterotrophic types (12.43%-27.19%) of chemical energy in roots and fillers of each wetland unit plant and aerobic chemoheterotrophy (10.11%-26.46%) were predominant, and the discovery of nitrogen cycle-related functions indicated that the bacteria played a key role in the nitrogen removal process of the combined constructed wetland system. Above all, the results indicated that under the synergistic interaction between the functional bacterial groups and wetland plants in different wetland units, the system had a good ecological purification effect on the characteristic pollutants of N and P in the external drainage of high-density land-based aquaculture.
-
表 1 实验运行方式
Table 1. Operation mode of experiment
阶段
(运行时间)处理单元 一级单元 二级单元 三级单元 阶段Ⅰ
(40 d)干/湿时间比8 h:16 h
第0~8 h控制水位30 cm,然后瞬时进水至水位50 cm停留至第24 h,瞬时出水至水位30 cm停留至第32 h,瞬时进水至水位
50 cm停留至第48 h,瞬时出水至水位30 cm(如此循环进出水)干/湿时间比16 h:8 h
第0~16 h排空水量,然后瞬时进水停留至第24 h,瞬时出水停留至第40 h,瞬时进水停留至第48 h,瞬时出水(如此循环进出水)淹没1 d 阶段Ⅱ
(40 d)干/湿时间比16 h:8 h
第0~16 h控制水位30 cm,然后瞬时进水至水位50 cm停留至第24 h,瞬时出水至水位30 cm停留至第40 h ,瞬时进水至水位50 cm停留至第48 h,瞬时出水至水位30 cm(如此循环进出水)干/湿时间比8 h:16 h
第0~8 h排空水量,然后瞬时进水停留至第
24 h,瞬时出水停留至第32 h,瞬时进水停留至第48 h,瞬时出水(如此循环进出水)淹没1 d 阶段Ⅲ
(40 d)干/湿时间比12 h:12 h
第0~12 h控制水为30 cm,然后瞬时进水至水位50 cm停留至第24 h,瞬时出水至水位30 cm停留至第36 h,瞬时进水至水位
50 cm停留至第48 h,瞬时出水至水位30 cm(如此循环进出水)干/湿时间比12 h:12 h
第0~12 h排空水量,然后瞬时进水停留至第24 h,瞬时出水停留至第36 h,瞬时进水停留至第48 h,瞬时出水(如此循环进出水)淹没1 d 阶段Ⅳ
(40 d)同阶段Ⅲ 同阶段Ⅲ 同阶段Ⅲ 表 2 不同类型湿地单元内湿地植物生物学特性及生理特性变化
Table 2. Variations of wetland plant biological characteristics and physiological characteristics in different types of wetland units
实验阶段 株高/cm 根系活力/(mg·(g·h)−1) POD酶活性/(U·g−1) 巨菌草 美人蕉 狐尾藻 巨菌草 美人蕉 狐尾藻 巨菌草 美人蕉 狐尾藻 阶段Ⅰ 130.67±3.06 50.09±3.49 27.00±4.08 8.94±1.12 1.59±0.29 4.6±0.63 472.53±5.00 285.71±34.97 5.99±0.63 阶段Ⅱ 149.00±5.04 71.20±7.05 40.10±3.30 27.79±5.45 1.33±0.20 3.03±0.64 446.33±15.02 351.75±28.12 11.99±0.64 阶段Ⅲ 156.67±4.66 85.00±4.92 40.98±4.02 40.98±4.02 0.76±0.10 0.9±0.04 447.1±14.37 327.47±21.88 46.43±7.46 阶段Ⅳ 164.00±6.70 89.00±8.97 33.00±2.69 35.55±4.91 1.33±0.24 0.88±0.12 420.03±17.23 159.23±20.34 37.93±5.96 -
[1] AGUILAR-ALARCON P, GONZALEZ S V, SIMONSEN M A, et al. Characterizing changes of dissolved organic matter composition with the use of distinct feeds in recirculating aquaculture systems via high-resolution mass spectrometry[J]. Science of the Total Environment, 2020, 749: 142326. doi: 10.1016/j.scitotenv.2020.142326 [2] 马东海. 浅谈陆基水产养殖技术[J]. 农业与技术, 2012, 32(6): 105. doi: 10.3969/j.issn.1671-962X.2012.06.079 [3] 陈斌. 陆基圆池循环水养殖模式的优势[J]. 当代水产, 2022, 47(1): 80-81. doi: 10.3969/j.issn.1674-9049.2022.01.024 [4] WANG X X, OLSEN L M, REITAN K I, et al. Discharge of nutrient wastes from salmon farms: environmental effects, and potential for integrated multi-trophic aquaculture[J]. Aquaculture Environment Interaction, 2012, 2(3): 267-283. doi: 10.3354/aei00044 [5] DAUDA A B, AJAD A, TOLA-FABUNMI A S, et al. Waste production in aquaculture: Sources, components and managements in different culture systems[J]. Aquaculture and Fisheries, 2019, 4(3): 81-88. doi: 10.1016/j.aaf.2018.10.002 [6] YANG P, ZHAO G H, TONG C, et al. Assessing nutrient budgets and environmental impacts of coastal land-based aquaculture system in southeastern China[J]. Agriculture, Ecosystems & Environment, 2021, 322: 107662. [7] NIMPTSCH J, WOELFL S, OSORIO S, et al. Tracing dissolved organic matter (DOM) from land-based aquaculture systems in North Patagonian streams[J]. Science of the Total Environment, 2015, 537: 129-138. doi: 10.1016/j.scitotenv.2015.07.160 [8] ABDUL L A, JING Y C, MOHD H Z M H, et al. Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review[J]. Journal of Water Process Engineering, 2022, 46: 102553. doi: 10.1016/j.jwpe.2021.102553 [9] GOMES J M, SILVA J M, DUARRTE J L S, et al. Ecotoxicological evaluation of a fish farming effluent treated by Fenton oxidation and coagulation process[J]. Separation Science and Technology, 2020, 55(16): 2967-2976. doi: 10.1080/01496395.2019.1662808 [10] LOPARDO C R, ZHANG L, WILIAM J, et al. Comparison of nutrient retention efficiency between vertical-flow and floating treatment wetland mesocosms with and without biodegradable Plastic[J]. Ecological Engineering, 2019, 131: 120-130. doi: 10.1016/j.ecoleng.2019.01.024 [11] BAKHSHOODEH R, ALAVI N, OLDHAM C, et al. Constructed wetlands for landfill leachate treatment: A review[J]. Ecological Engineering, 2020, 146: 105725. doi: 10.1016/j.ecoleng.2020.105725 [12] 国家环境保护总局. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境出版社, 2002. [13] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. [14] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. [15] 郭鹤方, 甄志磊, 赵林婷, 等. 潮汐流-潜流人工湿地对城市污染水体中氮的去除[J]. 环境化学, 2021, 40(12): 3887-3897. doi: 10.7524/j.issn.0254-6108.2021053002 [16] 张晓一. 表面流人工湿地与复合型生态浮床对低污染水体氮磷的去除特性研究[D]. 上海: 上海交通大学, 2019. [17] GU X S, CHEN D Y, WU F, et al. Function of aquatic plants on nitrogen removal and greenhouse gas emission in enhanced denitrification constructed wetlands: Iris pseudacorus for example[J]. Journal of Cleaner Production, 2022, 330: 129842. doi: 10.1016/j.jclepro.2021.129842 [18] 隗岚琳, 刘东升, 廖雪珂, 等. 垂直潜流人工湿地低温净化效果及其与微生物作用关系[J]. 环境科学学报, 2021, 41(10): 4039-4048. doi: 10.13671/j.hjkxxb.2021.0115 [19] 胡沅胜, 赵亚乾, 赵晓红, 等. 实现高效自养脱氮的单级上流式多潮汐人工湿地[J]. 中国给水排水, 2015, 31(15): 127-132. doi: 10.19853/j.zgjsps.1000-4602.2015.15.032 [20] LIU W R, CHEN W J, YANG D H, et al. Functional and compositional characteristics of nitrifiers reveal the failure of achieving mainstream nitritation under limited oxygen or ammonia conditions[J]. Bioresource Technology, 2019, 275: 272-279. doi: 10.1016/j.biortech.2018.12.065 [21] 刘国华, 庞毓敏, 范强, 等. 进水氨氮负荷对污水生物脱氮过程中N2O释放的影响[J]. 环境污染与防治, 2015, 37(7): 18-22. [22] 林运通, 崔理华, 范远红, 等. 5种湿地沉水植物对模拟污水厂尾水的深度处理[J]. 环境工程学报, 2016, 10(12): 6914-6922. [23] PAVLINERI N, SKOULIKIDIS N T, TSIHRINTZIS V A, et al. Constructed floating wetlands: A review of research, design, operation and management aspects, and data meta-analysis[J]. Chemical Engineering Journal, 2017, 308: 1120-1132. doi: 10.1016/j.cej.2016.09.140 [24] 李丹, 吕锡武, 巩佳佳, 等. 冷季型禾草人工湿地处理生活污水的应用[J]. 净水技术, 2020, 39(8): 72-79. doi: 10.15890/j.cnki.jsjs.2020.08.014 [25] KUNDAN S, SOHAM K, SHIVANSHI T, et al. Ecological floating bed (EFB) for decontamination of polluted water bodies: Design, mechanism and performance[J]. Journal of Environmental Management, 2019, 251: 109550. doi: 10.1016/j.jenvman.2019.109550 [26] 王俊力, 付子轼, 乔红霞, 等. 枯萎期芦苇收割时间对湿地脱氮效果及根系呼吸代谢的影响[J]. 环境科学研究, 2021, 34(8): 1909-1917. doi: 10.13198/j.issn.1001-6929.2021.02.10 [27] 陈永华, 吴晓芙, 何钢, 等. 人工湿地污水处理系统中的植物效应与基质酶活性[J]. 生态学报, 2009, 29(11): 6051-6057. doi: 10.3321/j.issn:1000-0933.2009.11.037 [28] ZHU L D, LI Z H, KETOLA T. Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China's rural area[J]. Ecological Engineering, 2011, 37(10): 1460-1466. doi: 10.1016/j.ecoleng.2011.03.010 [29] DU L, TRINH X T, CHEN Q R, et al. Enhancement of microbial nitrogen removal pathway by vegetation in Integrated Vertical-Flow Constructed Wetlands (IVCWs) for treating reclaimed water[J]. Bioresource Technology, 2018, 249: 644-651. doi: 10.1016/j.biortech.2017.10.074 [30] 赵倩, 庄林岚, 盛芹, 等. 潜流人工湿地中基质在污水净化中的作用机制与选择原理[J]. 环境工程, 2021, 39(9): 14-22. doi: 10.13205/j.hjgc.202109003 [31] 潘傲, 张智, 孙磊, 等. 种植不同植物的表面流人工湿地净化效果和微生物群落差异分析[J]. 环境工程学报, 2019, 13(8): 1918-1929. [32] 张馨文, 冯成业, 张文智, 等. 人工湿地碳调控研究进展[J]. 湿地科学, 2022, 20(3): 413-420. doi: 10.13248/j.cnki.wetlandsci.2022.03.015 [33] 张军, 周琪, 何蓉. 表面流人工湿地中氮磷的去除机理[J]. 生态环境, 2004(1): 98-101. [34] 黄翔峰, 王珅, 陈国鑫, 等. 人工湿地对水产养殖废水典型污染物的去除[J]. 环境工程学报, 2016, 10(1): 12-20. [35] 张彩莹, 王岩, 王妍艳. 潜流人工湿地对畜禽养殖废水的净化效果[J]. 农业工程学报, 2013(17): 160-168. [36] 姚燃, 刘锋, 吴露, 等. 三级绿狐尾藻表面流人工湿地对养殖废水处理效应研究[J]. 地球与环境, 2018, 46(5): 475-481. [37] 赵伟, 范增增, 杨新萍. 水平潜流人工湿地对畜禽养殖废水中特征污染物的去除[J]. 环境科学, 2021, 42(12): 5865-5875. [38] 沈莹, 郑于聪, 王晓昌, 等. 不同尺度潜流人工湿地对污染河水的净化机制[J]. 环境工程学报, 2018, 12(6): 1667-1675. [39] 崔理华, 朱夕珍, 骆世明, 等. 垂直流人工湿地系统对污水磷的净化效果[J]. 环境污染治理技术与设备, 2002, 3(7): 13-17. [40] 李飞翔, 岳琛, 张超月, 等. 人工湿地去除水产养殖尾水中氮磷的影响因素识别[J]. 生态与农村环境学报, 2022, 38(7): 925-932. [41] 周新伟, 沈明星, 金梅娟, 等. 多级串联表面流人工湿地对河蟹养殖尾水的净化效果研究[J]. 湿地科学, 2017, 15(6): 774-780. [42] YOUNGGY K, BRUCE E L. Simultaneous removal of organic matterand salt ions from saline wastewater in bioelectrochemical systems[J]. Desalination, 2013, 308(21): 115-121. [43] MA Q, QU Y Y, ZHANG X W, et al. Identification of the microbial community composition and structure of coal-mine wastewater treatmentplants[J]. Microbiological Research, 2015, 175: 1-5. doi: 10.1016/j.micres.2014.12.013 [44] MENG P P, PEI H Y, HU W R, et al. How to increasemicrobial degradation in constructed wetlands: influencing factorsand improvement measures[J]. Bioresource Technology, 2014, 157: 316-326. doi: 10.1016/j.biortech.2014.01.095 [45] CHI Z F, HOU L N, LI H. Effects of pollution load and salinity shock on nitrogen removal and bacterial community in two-stage vertical flow constructed wetlands[J]. Bioresource Technology, 2021, 342: 126031. doi: 10.1016/j.biortech.2021.126031 [46] 韩亚琳, 王福浩, 王 群, 等. HSBBR运行模式对同步短程硝化反硝化脱氮及微生物群落特征的影响[J]. 环境工程, 2021, 9(1): 51-57. [47] 刘琴, 信欣, 周希, 等. 磁性纳米 Fe3O4@C 对 SBR 脱氮除磷性能及其微生物种群组成的影响[J]. 环境科学学报, 2021, 41(7): 2664-2672. [48] 余俊霞, 陈双荣, 刘凌言, 等. 复合人工湿地系统对低污染水总氮的净化效果及其微生物群落结构特征[J]. 环境工程, 2022, 40(1): 13-20. [49] FANG Y K, WANG H C, HAN J L, et al. Enhanced nitrogen removal of constructed wetlands by coupling with the bioelectrochemical system under low temperature: Performance and mechanism[J]. Journal of Cleaner Production, 2022, 350: 131365. doi: 10.1016/j.jclepro.2022.131365 [50] WANG T, NI Z L, KUANG B, et al. Two-stage hybrid microalgal electroactive wetland-coupled anaerobic digestion for swine wastewater treatment in South China: Full-scale verification[J]. Science of the Total Environment, 2022, 820: 153312. doi: 10.1016/j.scitotenv.2022.153312 [51] LOUCA S, PARFREY LW, DOEBELI M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science, 2016, 353(6305): 1272-1277. doi: 10.1126/science.aaf4507 [52] 王飞鹏, 黄亚玲, 张瑞瑞, 等. 不同曝气方式对人工湿地细菌多样性、代谢活性及功能的影响[J]. 环境科学, 2022, 43(4): 2007-2016.