-
据统计,世界范围内污水处理厂能耗占社会总能耗的1%~3%[1]。我国废水与固废处理碳排放量占全社会总量1.6%[2]。尽管与能源、工业、建筑、交通等部门相比,水务行业产生的温室气体排放比重较小。但社会生产生活均与水相关,各行各业均需用水,能源行业的耗水量已占全世界用水量约15%[3]。因此,探究水务系统碳排是节能减排的重要方向。
国外学者对“水-能-碳”关系进行了深入研究,有对宏观尺度的城市水系统进行碳排放测算[4-5],也有对微观尺度的水泵选型、地下水提升、自来水处理、污水处理工艺设计、管网布置等环节碳排放的定量化研究[6-7]。国内关于城市水系统碳排放的研究起步晚,但近年来发展迅速,已初步形成系列研究成果。在理论层面,已开展了针对能源强度、能源需求和碳排放量在内的城市水系统“水—能”关系研究[8-9]。2022年,由中国城镇供水排水协会出台《城镇水务系统碳核算与减排路径技术指南》,对厘清城镇水务系统碳排放核算边界规范活动数据获取与核算方法选用提供了指导。国内也有部分团队开展了针对水系统单个环节的能耗研究,包括取供水、用水与污水版块[10-12]。
成都作为全面体现新发展理念城市首倡地、公园城市建设首提地和国家低碳试点城市,始终坚持生态优先和绿色发展,各领域各行业都在进行“双碳”相关课题的研究和试点工作。成都市水务部门率先在行业内开展碳排放核算,迈出了水务系统从低碳的定性分析向定量分析的重要一步。同时,基于碳排放核算,梳理了水务系统内碳排放特征,可进一步探索水务系统减碳转型路径。本研究梳理总结水务系统碳排放核算方法,将水务系统碳排放由定性分析上升至定量分析;同时通过对核算数据的统计和分析,提出成都市水务系统“双碳”的转型策略,以期为我国类似地区开展水务低碳工作提供参考。
城市水务系统碳排放测算及减碳对策分析:以成都市为例
Carbon emission measurement and carbon reduction strategy analysis of urban water system: A case study of Chengdu water system
-
摘要: 城市水务系统是单位产值能耗较高且与各行各业联系紧密的行业。在“双碳”背景下,开展碳排放核算及减碳策略研究是水务系统高质量发展的重要内容。通过构建成都市水务系统碳排放框架,基于大量统计数据,对水务系统中各个环节 (取、制、供、排等) 产生的直接及间接碳排放进行统筹核算。结果显示,2019年成都市水务系统碳排放总量约为70.3万吨 (以CO2计) ,主要碳排放领域为污水处理系统,其中的污水处理及污泥处理处置环节的碳排放贡献最为突出。基于核算结果,对水务系统减污降碳目标及实现路径进行系统分析及定量测算,提出包括“节水优先、高效管网、源头提质、低碳工艺及能源回用”的五大策略推进水务系统减碳转型,为成都市及类似城市的“双碳”水务系统建设提供参考。Abstract: Urban water system is an industry that has high energy consumption per unit output and is closely tied with other industries. Under the background of "carbon peaking and neutrality (double carbon)" policy, conducting carbon emission calculation and carbon reduction strategy research is an important part of high-quality development of water system. This paper set up the structure of carbon emission calculation of urban water system and calculated direct and indirect carbon emission of Chengdu water system, including water extraction, production, supply, and discharge, based on large amounts of real data. The result showed that the total carbon emission of Chengdu water system was approximately 745,000 tons (as CO2 equivalent) in 2019. The main producer was sewage system, in which the carbon emission generated from sewage treatment and sludge disposal was the most prominent. Based on these results, the goals and implementation path of Reduce pollution and carbon of water system were systematically and quantitatively analyzed. This paper put forward five key measures to promote carbon reduction, including "water conservation as priority, efficient pipe network, source improvement, low-carbon technology, and energy reuse", which can provide theoretical and technical support for the construction of "double-carbon" water system in Chengdu and similar cities.
-
表 1 成都市水务系统现状碳排放统计表
Table 1. Statistics of carbon emission of current water system in Chengdu
系统分类 水量规模/t 碳排放量/ ( t∙a−1) 碳排放量占比 碳排放强度/ (kg∙m−3) 高碳排放环节 供水系统 12×108 7.15×104 10% 0.06 漏损及泵站 污水及再生水系统 12×108 63.12×104 90% 0.52 污水处理 雨水系统 0.7×108 0.026×104 0.03% 0.004 排涝 表 2 成都市水务系统近期减碳策略
Table 2. Near-term carbon emission reduction strategy of Chengdu water system
水务系统 控制指标 目标值 主要措施 给水系统 管网水平均压力值 0.32 MPa 优化供水分区及泵组建设 漏损率 10% 实行分区计量管理、 管网查漏、主动更换漏损及易漏管道 万元工业增加值用水量 12 m3 提高工业用水重复利用率、降低工业用水定额 人均用水量 310 m3 宣贯节水理念,推广节水器具,增强居民节水意识 污水及
再生水系统进水BOD5 100 mg∙L-1 逐步取消城市区域现状化粪池;治理管网渗漏、错接、腐蚀等病害问题 污泥有机质含量 65% 逐步取消城市区域现状化粪池;治理管网渗漏、错接、腐蚀等病害问题 药耗削减率 5% 优化加药设备、应用在线监测系统,实现精准加药 吨水电耗 0.32 kW∙h∙m-3 更换老旧设备、应用在线检测和模拟技术优化曝气等高能耗单元 污泥资源化利用比例 试点 在新建污水厂试点建设厌氧消化+沼气回收处置设施 污水回用率 30% 建设城市再生水厂及配套管网系统 雨水系统 70%年径流总量控制率达标面积 40% 依托海绵城市建设开展,通过透水铺装、下凹绿地、雨水花园等低影响开发措施减少雨水径流量 雨水回用率 3% 在市内大型公园、 较大的城市广场、 高校、 政府机关等用地,建设雨水回收利用示范工程 -
[1] GU Y F, LI Y, LI X Y, et al. 2017. The feasibilty and challenges of energy self-sufficient wastewater treatment plants[J]. Applied Energy, 2017, 204: 1463-1475. doi: 10.1016/j.apenergy.2017.02.069 [2] 生态环境部. 中华人民共和国气候变化第二次两年更新报告[EB/OL]. [2022-10-21]. http://big5.mee.gov.cn/gate/big5/www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701765971866571.pdf, 2018. [3] 联合国教科文组织. 联合国世界水资源发展报告2016——水与就业[M]. 1版. 北京: 中国水利水电出版社, 2017. [4] LEE M, KELLER A A, CHIANG P C, et al. Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks[J]. Applied Energy, 2017, 205: 589-601. doi: 10.1016/j.apenergy.2017.08.002 [5] SUS O, HEUER M W, MEYERS T P W, et al. A data assimilation framework for constraining upscaled cropland carbon flux seasonality and biometry with MODIS[J]. Biogeosciences, 2013, 10(4): 2451-2466. doi: 10.5194/bg-10-2451-2013 [6] VIEIRA A S, GHISI E. Water-energy nexus in low-income houses in Brazil: the influence of integrated on-site water and sewage management strategies on the energy and sewerage services[J]. Journal of Cleaner Production, 2016, 133: 145-162. doi: 10.1016/j.jclepro.2016.05.104 [7] VALEK A M, SUSNIK J, GRAFAKOS S. Quantification of the urban water-energy nexus in Mexico City, Mexico, with an assessment of water-system related carbon emissions[J]. Science of The Total Environment, 2017, 590-591: 258-268. doi: 10.1016/j.scitotenv.2017.02.234 [8] 余娇, 赵荣钦, 肖连刚, 等. 基于“水—能—碳”关联的城市污水处理系统碳排放研究[J]. 资源科学, 2020, 42(6): 1052-1062. [9] 赵荣钦, 李志萍, 韩宇平, 等. 区域“水—土—能—碳”耦合作用机制分析[J]. 地理学报, 2016, 71(9): 1613-1628. [10] 崔昱, 邹琳, 张明, 等. 水厂二泵房能效监控平台在优化供水调度中的应用[J]. 净水技术, 2021, 40(12): 162-169. [11] 郭恰, 陈广, 马艳. 城市水系统关键环节碳排放影响因素分析及减排对策建议[J]. 净水技术, 2021, 40(10): 113-117. [12] 翟萌, 邵越, 徐福军. 西安污水处理厂温室气体排放及减排对策研究[J]. 环境工程, 2016, 34(2): 23-26. [13] 郝士博. 城市给排水系统能耗调查及评估[D]. 南京: 东南大学, 2017. [14] 朱永霞. 社会水循环全过程能耗评价方法研究[D]. 北京: 中国水利水电科学研究院, 2017. [15] 张程. 污水处理系统碳排放规律研究与量化评价[D]. 西安: 西安理工大学, 2017. [16] 黄建洪. 城市生活排水系统废气产排污系数核算研究[D]. 昆明: 昆明理工大学, 2013. [17] 翁晓姚. 碳达峰与碳中和目标下供水企业绿色低碳发展的思考[J]. 净水技术, 2022, 41(5): 1-4. [18] 笪跃武, 于少亭, 胡淑圆. 城市自来水厂绿色发展路径探索与思考[J]. 净水技术, 2022, 41(11): 1-6. [19] 刘晴靓, 王如菲, 马军. 碳中和愿景下城市供水面临的挑战、安全保障对策与技术研究进展[J]. 给水排水, 2022, 48(1): 1-12. [20] 刘冠琦, 张春洋, 范锦, 等. 绿色发展视角下城市污泥处理处置规划探索——以石家庄市为例[J]. 给水排水, 2020, 46(10): 31-36. [21] 杨庆, 王亚鑫, 曹效鑫, 等. 污水处理碳中和运行技术研究进展[J]. 北京工业大学学报, 2022, 48(3): 292-305. [22] 付浩, 罗琦. 提质增效行动下某设区市污水处理减碳强度分析[J]. 中国给水排水, 2022, 38(23): 63-68. [23] 郝晓地, 张益宁, 李季, 等. 污水处理能源中和与碳中和案例分析[J]. 中国给水排水, 2021, 37(20): 1-8. [24] 赵刚, 唐建国, 徐竟成, 等. 中美典型污泥处理处置工程能耗和碳排放比较分析[J]. 环境工程, 2022, 40(12): 9-16. [25] 黄雄虎, 顾敦罡, 陆嘉麒等. 污水源热泵技术在城市污水热能回收中的应用现状与研究进展[J/OL][J]. 应用化工, 2023, 52(3): 922-928. [26] 郝晓地, 赵梓丞, 李季, 等. 污水处理厂的能源与资源回收方式及其碳排放核算: 以芬兰Kakolanmaki污水处理厂为例[J]. 环境工程学报, 2021, 15(9): 2849-2857.