-
大气中温室气体浓度持续升高是导致全球气候变暖的主要原因[1]。甲烷 (CH4) 作为第二重要的温室气体,其全球变暖潜力是二氧化碳 (CO2) 的28~34倍[2]。畜禽养殖业是大气中CH4重要的人为排放源,约占全球人为CH4排放量的28%~35%[3],因此,控制畜禽养殖业CH4排放对于削减人为源温室气体排放至关重要。畜禽养殖业排放的CH4约11%来自粪尿存储过程微生物的厌氧发酵[4]。近些年,畜禽粪尿由敞开式存储转变为密闭式存储成为主流趋势[5],这使得采取工程措施对粪尿存储产生的含CH4废气进行控制成为可能。与沼气池不同,粪尿存储过程的厌氧发酵活动水平一般不高,这导致粪尿存储排放的含CH4废气浓度一般不会超过5%,不具备能源化利用价值,也不宜采用建设和运行成本均较高的吸附法或催化燃烧法进行处理[6]。
生物过滤废气净化技术具有建设成本低、运行维护简单等优点,适合于处理养殖场排放的低浓度、大气量含CH4废气[7]。生物过滤净化CH4过程是在一定的人工控制条件下,利用甲烷氧化菌将CH4转化为CO2和水的微生物学过程[8]。上述人工控制条件主要包括营养物质[9]、CH4/O2[10]、pH[11]、温度[12]、水分[13]、空床停留时间[14]等,这其中以氮源为代表的营养物质供给对生物过滤塔CH4净化效率的影响最为关键。只有持续的氮源供应才能保证生物过滤塔高效稳定的CH4净化性能。因此,生物过滤法常采用堆肥作为滤料,堆肥中养分的缓慢释放可供给甲烷氧化菌所需的含氮营养物质。然而,当堆肥中营养物质耗尽后,生物过滤塔的CH4氧化速率则会降低或者停止,需频繁更换滤料来维持运行[15]。为避免上述滤料更换问题,目前常采用在滤料上循环喷淋营养液的形式来补充生物过滤塔中甲烷氧化菌所需的氮源等营养物质,但这会增大技术的运行成本[16],因此,寻求一种价格低廉、来源广泛的液态氮源对于加快生物法净化CH4废气技术的应用显得尤为重要。
畜禽养殖场液态粪污一般含有高浓度的铵态氮[17]。这类废水是否可作为除CH4生物过滤塔的营养物质,目前尚未给出清晰答案。一般而言,硝态氮被认为是最适宜甲烷氧化菌生长代谢的营养物质。如以硝态氮为主要氮源的硝酸盐无机培养基 (NMS培养基) 就被广泛用于甲烷氧化纯菌的培养[18]。NIKIEMA等[19]以硝态氮作为生物过滤法净化CH4废气的氮源,使得CH4的去除负荷高达36 g·m−3·h−1。相对而言,铵态氮常被认为其对甲烷氧化菌具有抑制作用,其原因主要有:一是氨单加氧酶 (AMO) 和甲烷单加氧酶 (pMMO) 从进化亲缘关系上属于同一类含铜的单加氧酶,铵态氮会与CH4竞争pMMO上的活性位点,进而抑制CH4氧化过程;二是铵氮转化过程中会积累一定浓度的NH2OH和NO2−,这2种物质对微生物具有毒性作用,会长期抑制甲烷氧化菌的生长代谢[20]。如HUBER等[21]发现高浓的铵态氮会抑制甲烷氧化纯菌的活性,从而降低生物过滤床的CH4净化效率。但是,NYERGES等[22]研究表明,甲烷氧化菌Methylomicrobium album在铵态氮较高的环境中具有高于其他甲烷养化菌的竞争优势,推测某些甲烷氧化菌可与其他转化氨的微生物组成一个共生群落,进而维持微型生态系统的平衡。该研究结果为含高浓度铵态氮的液态粪污作为生物过滤法净化CH4废气的氮源提供了可能。为探明铵态氮作为氮源对生物过滤塔CH4净化过程的影响,还应对该过程涉及到的微生物学机理进行深入研究。
本研究以不加氮源生物过滤塔为对照,开展铵态氮对生物过滤塔CH4净化性能的影响,并借助宏基因组学分析技术,从物种分类学组成、系统代谢功能方面,解析铵态氮对生物过滤塔净化CH4过程微生物群落结构和功能的影响机制,以期为生物过滤法净化畜禽养殖含CH4废气和液态养殖粪污的综合利用提供参考。
铵态氮对生物过滤塔甲烷净化性能的影响及其微生物学机理
Effects of ammonium nitrogen on methane purification performance of biofilter and its microbiological mechanism
-
摘要: 氮源是生物过滤塔高效稳定净化甲烷 (CH4) 废气的关键因素,然而关于畜禽养殖废水中铵氮是否可以作为除CH4生物过滤塔氮源以及相应的作用机制尚不明晰。启动并成功运行2个生物过滤塔BF_no (对照,无氮源) 和BF_A (铵态氮为氮源) ,比较分析了不同停留时间 (EBRT) 下,2个生物过滤塔的CH4净化性能,并采用宏基因组技术解析了铵态氮影响生物过滤塔CH4净化性能的微生物学机理。结果表明,生物过滤塔BF_A的CH4去除性能优于生物过滤塔BF_no,当EBRT为44 min时,BF_A的CH4去除效率稳定在80%以上,而生物过滤塔BF_no的CH4去除效率不足70%。宏基因组分析结果表明:BF_no和BF_A具有显著不同的微生物群落结构,其中硝化螺旋菌门 (Nitrospirae) 是生物过滤塔BF_A中的特有菌属。生物过滤塔BF_A中与硝化过程相关的amoA和hao基因,以及与CH4氧化相关的fae、mtdA和fmdA基因相对丰度均显著高于BF_no (P≤0.05) ,证明以铵态氮为氮源的生物过滤塔BF_A中不仅具有较高的硝化能力,还具有较高的CH4氧化能力。本研究结果可为生物过滤法净化畜禽养殖含CH4废气和液态养殖粪污的综合利用提供参考。Abstract: Nitrogen is the key factor for the efficient and stable operation of biofilters treating methane (CH4) containing gases. However, it is unclear whether the livestock wastewater with high concentrations of NH4+-N can be used as the nitrogen source of biofilter for CH4 removal and the corresponding mechanism. This study successfully operated two biofilters treating simulated CH4 containing gases, BF_no (control, no nitrogen source) and BF_A (NH4+-N as nitrogen source), and compared CH4 purification performances of the two biofilters under different empty bed residence time (EBRT). The corresponding microbiological mechanism was investigated based on metagenomic analysis. The results showed that BF_A exhibited a better CH4 purification performance in comparison with BF_no. When the EBRT was 44 min, the CH4 removal efficiency of BF_A was stable at more than 80%, while that of BF_no was less than 70%. The two biofliters had significantly different microbial community structures. The species Nitrospirae showed a quite high relative abundance in BF_A. The relative abundance of amoA and hao genes related to nitrification process, and the relative abundance of fae , mtdA and fmdA genes related to CH4 oxidation in BF_A were significantly higher than that in BF_no ( P ≤0.05), which proved that BF_A with NH4+-N as nitrogen source had higher nitrification and CH4 oxidation ability.
-
Key words:
- ammonia nitrogen /
- CH4 oxidation /
- biofiltration /
- metagenome
-
-
[1] FERNANDEZ-AMADOR O, OBERDABERNIG D A, TOMBERGER P. Do methane emissions converge? Evidence from global panel data on production-and consumption-based emissions[J]. Empirical Economics, 2022, 63(2): 877-900. doi: 10.1007/s00181-021-02162-9 [2] 汪开英, 李鑫, 陆建定, 等. 碳中和目标下畜牧业低碳发展路径[J]. 农业工程学报, 2022, 38(1): 230-238. [3] MALDANER L, WAGNER-RIDDLE C, VANDERZAAG A C, et al. Methane emissions from storage of digestate at a dairy manure biogas facility[J]. Agricultural and Forest Meteorology, 2018, 258: 96-107. doi: 10.1016/j.agrformet.2017.12.184 [4] 徐文倩, 董红敏, 尚斌, 等. 典型畜禽粪便厌氧发酵产甲烷潜力试验与计算[J]. 农业工程学报, 2021, 37(14): 228-234. [5] DE PUE D, BUYSSE J. Safeguarding natura 2000 habitats from nitrogen deposition by tackling ammonia emissions from livestock facilities[J]. Environmental Science & Policy, 2020, 111: 74-82. [6] RAMIREZ A A, GARCIA-AGUILAR B P, JONES J P, et al. Improvement of methane biofiltration by the addition of non-ionic surfactants to biofilters packed with inert materials[J]. Process Biochemistry, 2012, 47(1): 76-82. doi: 10.1016/j.procbio.2011.10.007 [7] 尚斌, 周谈龙, 董红敏, 等. 生物过滤法去除死猪堆肥排放臭气效果的中试[J]. 农业工程学报, 2017, 33(11): 226-232. doi: 10.11975/j.issn.1002-6819.2017.11.029 [8] SMIRNOVA A V, DUNFIELD P F. Differential transcriptional activation of genes encoding soluble methane monooxygenase in a facultative versus an obligate methanotroph[J]. Microorganisms, 2018, 6(1): 20. doi: 10.3390/microorganisms6010020 [9] GOMEZ-CUERVO S, ALFONSIN C, HERNANDEZ J, et al. Diffuse methane emissions abatement by organic and inorganic packed biofilters: Assessment of operational and environmental indicators[J]. Journal of Cleaner Production, 2017, 143: 1191-1202. doi: 10.1016/j.jclepro.2016.11.185 [10] CHIEMCHAISRI W, CHIEMCHAISRI C, BOONCHAIYUTTASAK J. Utilization of stabilized wastes for reducing methane emission from municipal solid waste disposal[J]. Bioresource Technology, 2013, 141: 199-204. doi: 10.1016/j.biortech.2013.03.035 [11] HUETE A, DE L C D, GOMEZ-BORRAZ T, et al. Control of dissolved CH4 in a municipal UASB reactor effluent by means of a desorption-Biofiltration arrangement[J]. Journal of Environmental Management, 2018, 216: 383-391. [12] HAN J S, MAHANTY B, YOON S U, et al. Activity of a methanotrophic consortium isolated from landfill cover soil: Response to temperature, pH, CO2, and porous adsorbent[J]. Geomicrobiology Journal, 2016, 33(10): 878-885. doi: 10.1080/01490451.2015.1123330 [13] SYED R, SAGGAR S, TATE K, et al. Assessing the performance of floating biofilters for oxidation of methane from dairy effluent ponds[J]. Journal of Environmental Quality, 2017, 46(2): 272-280. doi: 10.2134/jeq2016.08.0310 [14] FERDOWSI M, VEILLETTE M, RAMIREZ A A, et al. Performance evaluation of a methane biofilter under steady state, transient state and starvation conditions[J]. Water Air and Soil Pollution, 2016, 227(6): 168. doi: 10.1007/s11270-016-2838-7 [15] FARROKHZADEH H, HETTIARATCHI J P A, JAYASINGHE P, et al. Aerated biofilters with multiple-level air injection configurations to enhance biological treatment of methane emissions[J]. Bioresource Technology, 2017, 239: 219-225. doi: 10.1016/j.biortech.2017.05.009 [16] LEBRERO R, LOPEZ J C, LEHTINEN I, et al. Exploring the potential of fungi for methane abatement: Performance evaluation of a fungal-bacterial biofilter[J]. Chemosphere, 2016, 144: 97-106. doi: 10.1016/j.chemosphere.2015.08.017 [17] WANG H, QI X, CHEN S, et al. The efficient treatment of breeding wastewater by an electroactive microbial community in microbial fuel cell[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107187. doi: 10.1016/j.jece.2022.107187 [18] CHOI H, RYU H W, CHO K S. Biocomplex textile as an alternative daily cover for the simultaneous mitigation of methane and malodorous compounds[J]. Waste Management, 2018, 72: 339-348. doi: 10.1016/j.wasman.2017.11.017 [19] NIKIEMA J, GIRARD M, BRZEZINSKI R, et al. Biofiltration of methane using an inorganic filter bed: Influence of inlet load and nitrogen concentration[J]. Canadian Journal of Civil Engineering, 2009, 36(12): 1903-1910. doi: 10.1139/L09-144 [20] LA H, HETTIARATCHI J P A, ACHARI G, et al. Biofiltration of methane using hybrid mixtures of biochar, lava rock and compost[J]. Environmental Pollution, 2018, 241: 45-54. doi: 10.1016/j.envpol.2018.05.039 [21] HUBER-HUMER M, TINTNER J, BOHM K, et al. Scrutinizing compost properties and their impact on methane oxidation efficiency[J]. Waste Management, 2011, 31(5): 871-883. doi: 10.1016/j.wasman.2010.09.023 [22] NYERGES G, HAN S K, STEIN L Y. Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria[J]. Applied and Environmental Microbiology, 2010, 76(16): 5648-5651. doi: 10.1128/AEM.00747-10 [23] WU Y M, YANG J, FAN X L, et al. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria[J]. Bioresource Technology, 2018, 260: 432. doi: 10.1016/j.biortech.2018.04.034 [24] CHEN S, ZHOU Y, CHEN Y, et al. Fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): 884-890. doi: 10.1093/bioinformatics/bty560 [25] LI D, LIU C M, LUO R, et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10): 1674-1676. doi: 10.1093/bioinformatics/btv033 [26] NOGUCHI H, PARK J, TAKAGI T. MetaGene: Prokaryotic gene finding from environmental genome shotgun sequences[J]. Nucleic Acids Res, 2006, 34(19): 5623-5630. doi: 10.1093/nar/gkl723 [27] FU L, NIU B, ZHU Z, et al. CD-HIT: accelerated for clustering the next-generation sequencing data[J]. Bioinformatics, 2012, 28(23): 3150-3152. doi: 10.1093/bioinformatics/bts565 [28] LI R, LI Y, KRISTIANSEN K, et al. SOAP: short oligonucleotide alignment program[J]. Bioinformatics, 2008, 24(5): 713-714. doi: 10.1093/bioinformatics/btn025 [29] BUCHFINK B, XIE C, HUSON D H. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 2015, 12(1): 59-60. doi: 10.1038/nmeth.3176 [30] BRANDT E M F, DUARTE F V, VIEIRA J P R, et al. The use of novel packing material for improving methane oxidation in biofilters[J]. Journal of Environmental Management, 2016, 182: 412-420. doi: 10.1016/j.jenvman.2016.07.075 [31] STONE K, HILLIARD M, BADR K, et al. Comparative study of oxygen-limited and methane-limited growth phenotypes of Methylomicrobium buryatense 5GB1[J]. Biochemical Engineering Journal, 2020, 161: 107707. doi: 10.1016/j.bej.2020.107707 [32] LA H, HETTIARATCHI J P A, ACHARI G, et al. Investigation of biologically stable biofilter medium for methane mitigation by methanotrophic bacteria[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2018, 22(3): 04018013. doi: 10.1061/(ASCE)HZ.2153-5515.0000406 [33] BERGER J, FORNES L V, OTT C, et al. Methane oxidation in a landfill cover with capillary barrier[J]. Waste Management, 2005, 25(4): 369-373. doi: 10.1016/j.wasman.2005.02.005 [34] YANG Z, ZHOU Q, SUN H, et al. Metagenomic analyses of microbial structure and metabolic pathway in solid-phase denitrification systems for advanced nitrogen removal of wastewater treatment plant effluent: A pilot-scale study[J]. Water Research, 2021, 196: 117067. doi: 10.1016/j.watres.2021.117067 [35] LAN H, THI T P, URYNOWICZ M, et al. First investigation of microbial diversity and biogenic methane potential in coal mines located in the Red River Basin, Vietnam[J]. International Journal of Coal Geology, 2021, 234: 103674. doi: 10.1016/j.coal.2020.103674 [36] MA R C, CHU Y X, WANG J, et al. Stable-isotopic and metagenomic analyses reveal metabolic and microbial link of aerobic methane oxidation coupled to denitrification at different O2 levels[J]. Science of the Total Environment, 2021, 764: 142901. doi: 10.1016/j.scitotenv.2020.142901