-
我国是生猪生产和猪肉消费大国[1],生猪养殖业在国计民生中具有重要地位。随着生猪养殖规模化发展,在一些地区产生了大量含高浓度有机物和氮、磷等物质[2]的猪场废水,对周边环境产生污染。猪场废水处理模式大致有2种:还田利用和达标处理。废水经过无害化处理后用作肥料还田 (还田利用)是最理想的处理利用方式,但需要大量供还田的土地,对于周边土地有限的大型和特大型猪场,达标处理仍然是一种现实选择。
猪场废水达标处理通常采用厌氧-好氧组合工艺。在组合工艺中,厌氧段主要去除高浓度有机物并回收可再生能源—沼气,未被去除的氮素会导致厌氧消化液(沼液)呈现低碳氮比(C/N)废水的特征[3]。厌氧出水的生化后处理单元主要采用传统序批式活性污泥法(sequencing batch reactor activated sludge process,SBR) 和缺氧/好氧活性污泥法(anoxic/oxic activated sludge process,A/O),但这些工艺处理沼液的脱氮效果均比较差[4-6],主要是因为沼液缺乏易降解有机物,不能满足传统反硝化脱氮的需求。
近年来,一些研究者采用微好氧脱氮技术处理沼液,取得了较好的脱氮效果[7-9]。微氧脱氮技术是将反应体系的溶解氧质量浓度(DO)控制在0.3~1.0 mg·L−1,在同一反应器中同时实现有机物降解和氨氮、总氮的去除。已有研究[10]表明,在低溶解氧条件下处理沼液,处理系统中能建立短程硝化-厌氧氨氧化-反硝化(shortcut nitrification-anammox-denitrification,SNAD)混合脱氮体系,存在短程硝化-厌氧氨氧化和短程硝化-反硝化2种脱氮过程,可以使自养菌、异养菌在微氧环境中共存。与传统脱氮工艺相比,微氧脱氮技术具有较好脱氮效果[11],并且可长期在低溶解氧状态下运行,N2O的排放量能减少54%[12]。
目前,微氧脱氮技术主要采用升流式微氧活性污泥反应器(up-flow micro-aerobic sludge reactor, UMSR)和内曝气升流式反应器(internal aeration up-flow reactor, IAUR)进行处理。UMSR采用在出水池中曝气和部分回流的方式来控制反应器内溶解氧浓度,导致其混合液回流比高,能耗大;IAUR设计结构复杂,工程上难以大规模应用。本研究基于IAUR反应器和升流式厌氧污泥床(up-flow anaerobic sludge bed,UASB)的原理设计了曝气沉淀一体化微氧反应器(aeration and sedimentation integrated micro-aerobic reactor, ASIMR),以污泥滞留能力和污染物去除性能为指标初步优选出2种反应器后,进行沼液处理实验,通过污染物去除性能、污泥滞留能力和活性污泥性状等指标来优选出更适合工程应用的微氧反应器。
新型微氧反应器对沼液的处理性能
Performance of a novel micro-aerobic reactor on biogas slurry treatment
-
摘要: 针对现有微氧反应器存在回流能耗高、工程放大困难等问题,设计了2类新型曝气沉淀一体化微氧反应器。根据污泥滞留能力、污染物去除性能初步测试,优选出升流式矩形反应器和改进型圆形反应器作为沼液处理实验的微氧反应器。结果表明:2个反应器的平均NH4+-N去除负荷为0.410 kg·(m3·d)−1,平均TIN去除负荷为0.105 kg·(m3·d)−1,出水SS均小于0.10 g·L−1,都拥有优良的滞泥能力和污染物去除能力,无显著性差异(P>0.05)。在污泥浓度相近的情况下,升流式矩形反应器中污泥的VSS/SS由64.4%增至78.0%,这说明生物量明显增加,而改进型圆形反应器中污泥的VSS/SS降至62.1%;污泥指数显示升流式矩形反应器的污泥沉降性能更好。从污泥性状和工程放大可能性考虑,升流式矩形反应器更适合在工程上应用。Abstract: Aiming at the problems such as high energy consumption of reflux and difficulty in engineering scale-up, two new types of aeration-sedimentation integrated micro-aerobic reactors were designed. According to the preliminary test of sludge retention capacity and pollutant removal performance, the upflow rectangular reactor and the improved circular reactor were selected as the micro-aerobic reactors for biogas slurry treatment. The results showed that for the two reactors, their average NH4+-N removal loading was about 0.410 kg·(m3·d)−1, average TIN removal loading was about 0.105 kg·(m3·d)−1, and the effluent SS was less than 0.10 g·L−1. Both reactors had excellent sludge retention capacity and pollutant removal performance, with no significant difference (P > 0.05). At the similar sludge concentration, the VSS/SS value of sludge in the upflow rectangular reactor increased from 64.4 % to 78.0 %, indicating that the biomass increased significantly; while the VSS/SS value of sludge in the improved circular reactor decreased to 62.1 %. In addition, SVI value showed that sludge in the upflow rectangular reactor had better settling performance than that in the improved circular reactor. Considering sludge characteristics and the possibility of scaling up, the upflow rectangular reactor is more suitable for engineering application.
-
Key words:
- microaerobic reactor /
- piggery wastewater /
- micro-aerobic /
- nitrogen removal /
- sludge sedimentation
-
表 1 微氧反应器处理沼液实验进水水质
Table 1. Influent characteristics in the experiment of biogas slurry treatment by micro-aerobic reactor
阶段 COD/(mg·L−1) NH4+-N/(mg·L−1) NO3−-N/(mg·L−1) NO2−-N/(mg·L−1) TIN/(mg·L−1) COD/TIN Ⅰ(1~15 d) 1 556±672 845±145 0.000 0.000 845±145 1.84 Ⅱ(16~57 d) 1 416±260 722±89.0 19.3±10.1 93.0±17.6 834±84.7 1.67 表 2 微氧反应器脱氮效果比较
Table 2. Comparison of nitrogen removal by the microaerobic reactor in different studies
工艺 进水水质 NH4+-Ninf TINinf C/TIN ARR NRR 途径 来源 /(mg·L−1) /(mg·L−1) /(kg·(d·m³)−1) /(kg·(d·m³)−1) ASIMRUR 沼液 845 845 1.84 0.413 0.174 PN/DB 本研究 ASIMRIC 沼液 845 845 1.84 0.479 0.132 PN/DB 本研究 ASIMRUR 沼液+出水 722 722 1.96 0.407 0.086 PN/DB 本研究 ASIMRIC 沼液+出水 722 722 1.96 0.395 0.094 PN/DB 本研究 UMSR 干清粪猪场废水 269 273 0.68 0.712 0.664 PN/A 文献[7] UMSR 干清粪猪场废水 306 307 0.9 0.94 0.91 PN/DB 文献[9] UMBR 干清粪猪场废水 306 307 0.9 0.64 0.55 PN/DB 文献[9] SBR 干清粪猪场废水 415 417 0.63 1.158 1.047 PN/A 文献[25] SBBR 合成废水 75 75 5 0.065 0.064 PN/DB 文献[26] A/O 合成废水 50 7 0.098 PN/DB 文献[4] SFAO4 沼液+原水 729 >5 0.155 0.137 SNAD 文献[8] IAMR 无粪猪场废水 235.5 335.2 0.77 0.668 0.831 SNAD 文献[27] A2/O 无粪猪场废水 373 454 1.93 0.028 0.032 SNAD 文献[10] BNR 无粪猪场废水 783 758 2.58 0.074 0.067 SNAD 文献[24] UMSR 无粪猪场废水 393 394 0.93 0.179 0.164 PN/A 文献[28] 表 3 不同阶段的污泥活性速率
Table 3. Sludge activity at different stages
时间/d 升流式矩形反应器活性
速率/(mg·(g·h)−1)改进型圆形反应器活性
速率/(mg·(g·h)−1)rAOB rNOB rDB rAnAOB rAOB rNOB rDB rAnAOB 1 1.63 0.86 0.90 0.00 1.63 0.86 0.90 0.00 14 9.69 1.21 0.64 0.00 19.2 2.25 0.20 0.00 28 11.3 1.27 1.03 0.00 23.8 2.11 1.87 0.00 42 20.7 0.26 0.74 0.00 23.9 1.13 0.94 0.00 表 4 微氧反应器在不同HRT下的出水SS质量浓度
Table 4. Effluent SS concentration of micro-aerobic reactor at different HRTs
HRT/d 升流式矩形反应器/
(g·L−1)改进型圆形反应器/
(g·L−1)1.75 0 0 1.4 0 0 1.17 0.10 0 1.00 0 0 0.88 0 0.04 0.78 0 0 0.70 0.07 0 表 5 微氧反应器在不同曝气量下的出水SS质量浓度
Table 5. Effluent SS concentration of micro-aerobic reactor at different aeration rates
曝气量/
(L·d−1)升流式矩形反应器/
(g·L−1)改进型圆形反应器/
(g·L−1)576 0 0 720 0.01 0.01 864 0 0 1 008 0 0 1 152 0 0.01 1 296 0 0.06 1 440 0.01 0.05 -
[1] SUN J M. Pork price forecast based on breeding sow stocks and hog-grain price ratio[J]. Editorial Office of Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13): 1-6. [2] 第二次全国污染源普查公报[J]. 环境保护, 2020, 48(18): 8-10. [3] 贺仲兵, 刘云国. 添加原水在猪场废水处理中的应用[J]. 黑龙江畜牧兽医, 2012, 24: 83-84. doi: 10.13881/j.cnki.hljxmsy.2012.24.005 [4] 陈燕, 刘国华, 范强, 等. 不同溶解氧条件下A/O系统的除碳脱氮效果和细菌群落结构变化[J]. 环境科学, 2015, 36(7): 2610-2616. doi: 10.13227/j.hjkx.2015.07.038 [5] 蔡英英, 韩志刚, 邓良伟, 等. A/O与SBR工艺处理猪场废水厌氧消化液对比研究[J]. 农业环境科学学报, 2022, 41(3): 648-657. doi: 10.11654/jaes.2021-0895 [6] 杨含. 零价铁介导下猪场废水厌氧消化液自养脱氮的影响因素与机制[D]. 北京: 中国农业科学院, 2020. [7] 范鑫帝. 养猪场废水微氧活性污泥处理系统的调控运行与脱氮机制[D]. 哈尔滨: 哈尔滨工业大学, 2019. [8] 吴杭航. 猪场废水厌氧沼液SFAO4微氧曝气处理工艺脱氮性能研究[D]. 杭州: 浙江大学, 2017. [9] 王成. 升流式微氧反应器处理低C/N比养猪废水效能[D]. 哈尔滨: 哈尔滨工业大学, 2016. [10] CHEN Y, ZHENG R, SUI Q, et al. Coupling anammox with denitrification in a full-scale combined biological nitrogen removal process for swine wastewater treatment[J]. Bioresource Technology, 2021, 329: 124906. doi: 10.1016/j.biortech.2021.124906 [11] 黄春雷, 王振旗, 孙杰, 等. 一体化低溶解氧生化处理工艺在猪场废水脱氮工程中的应用[J]. 净水技术, 2020, 39(S2): 78-83. doi: 10.15890/j.cnki.jsjs.2020.s2.015 [12] LIU G Q, WU X W, LI D Y, et al. Long-Term low dissolved oxygen operation decreases N2O emissions in the activated sludge process[J]. Environmental Science & Technology, 2021, 55(10): 6975-6983. [13] 胡纪萃. UASB反应器三相分离器的设计方法[J]. 中国沼气, 1992(3): 5-9. [14] LIU W L, YANG Q, MA B, et al. Rapid achievement of nitritation using aerobic starvation[J]. Environmental Science & Technology, 2017, 51(7): 4001-4008. [15] LEDOUX M, LAMY F. Determination of proteins and sulfobetaine with the Folin-phenol reagent[J]. Analytical Biochemistry, 1986, 157(1): 28-31. doi: 10.1016/0003-2697(86)90191-0 [16] SHARMA V, SUROLIA A. Analyses of carbohydrate recognition by legume lectins: Size of the combining site loops and their primary specificity[J]. Journal of Molecular Biology, 1997, 267(2): 433-445. doi: 10.1006/jmbi.1996.0863 [17] QIAN W T, MA B, LI X Y, et al. Long-term effect of pH on denitrification: High pH benefits achieving partial-denitrification[J]. Bioresource Technology, 2019, 278: 444-449. doi: 10.1016/j.biortech.2019.01.105 [18] 周安兴, 刘玄. 亚硝氮对COD测试的影响及掩蔽研究[J]. 工程技术研究, 2019, 4(2): 253-254. doi: 10.19537/j.cnki.2096-2789.2019.02.123 [19] PAN Y, YE L, NI B J, et al. Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J]. Water Research, 2012, 46(15): 4832-4840. doi: 10.1016/j.watres.2012.06.003 [20] 宋姬晨, 王淑莹, 杨雄, 等. 亚硝酸盐对A2O系统脱氮除磷的影响[J]. 中国环境科学, 2014, 34(9): 2231-2238. [21] YAN L, LIU Y, REN Y, et al. The effect of pH on the efficiency of an SBR processing piggery wastewater[J]. Biotechnology and Bioprocess Engineering, 2013, 18(6): 1230-1237. doi: 10.1007/s12257-013-0292-6 [22] HUNIK H J, TRAMPER J, WIJFFELS R H. A strategy to scale up nitrification processes with immobilized cells of Nitrosomonas Europaea and Nitrobacter agilis[J]. Bioprocess Engineering, 1994, 11(2): 73-82. doi: 10.1007/BF00389563 [23] 王伸, 邓良伟, 姜奕圻, 等. 加碱对猪场废水厌氧消化液好氧处理过程酸化改进作用及其对菌群结构的影响[J]. 中国沼气, 2017, 35(6): 3-9. doi: 10.3969/j.issn.1000-1166.2017.06.001 [24] WANG X, YANG R, ZHANG Z, et al. Mass balance and bacterial characteristics in an in-situ full-scale swine wastewater treatment system occurring anammox process[J]. Bioresource Technology, 2019, 292: 122005. doi: 10.1016/j.biortech.2019.122005 [25] 张布云. 好氧-微氧两级SBR处理养猪废水技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. [26] 吴丹. 不同曝气方式下短程硝化反硝化工艺特性研究[D]. 重庆: 重庆大学, 2012. [27] SUN Z, LI J, FAN Y, et al. Efficiency and mechanism of nitrogen removal from piggery wastewater in an improved microaerobic process[J]. Science of the Total Environment, 2021, 774: 144925. doi: 10.1016/j.scitotenv.2020.144925 [28] TIAN Y, LI J, FAN Y, et al. Performance and nitrogen removal mechanism in a novel aerobic-microaerobic combined process treating manure-free piggery wastewater[J]. Bioresource Technology, 2022, 345: 126494. doi: 10.1016/j.biortech.2021.126494 [29] 王红武, 李晓岩, 赵庆祥. 胞外聚合物对活性污泥沉降和絮凝性能的影响研究[J]. 中国安全科学学报, 2003, 13(9): 31-34. doi: 10.3969/j.issn.1003-3033.2003.09.008 [30] 王红武, 李晓岩, 赵庆祥. 活性污泥的表面特性与其沉降脱水性能的关系[J]. 清华大学学报(自然科学版), 2004, 44(6): 766-769. doi: 10.3321/j.issn:1000-0054.2004.06.013 [31] FRøLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research (Oxford), 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1 [32] WANG S, HUANG X, LIU L, et al. Insight into the role of exopolysaccharide in determining the structural stability of aerobic granular sludge[J]. Journal of Environmental Management, 2021, 298: 113521. doi: 10.1016/j.jenvman.2021.113521 [33] 周健, 龙腾锐, 苗利利. 胞外聚合物EPS对活性污泥沉降性能的影响研究[J]. 环境科学学报, 2004, 24(4): 613-618. doi: 10.3321/j.issn:0253-2468.2004.04.009 [34] FAN Z, ZENG W, LIU H, et al. A novel partial denitrification, anammox-biological phosphorus removal, fermentation and partial nitrification (PDA-PFPN) process for real domestic wastewater and waste activated sludge treatment[J]. Water Research, 2022, 217: 118376. doi: 10.1016/j.watres.2022.118376 [35] LI J, PENG Y, ZHANG L, et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor[J]. Water Research, 2019, 160: 178-187. doi: 10.1016/j.watres.2019.05.070 [36] 朱葛夫, 张净瑞, 刘超翔, 等. 厌氧氨氧化工艺的启动及有机物浓度对其影响研究[J]. 环境工程, 2016, 34(2): 27-32. doi: 10.13205/j.hjgc.201602007 [37] STROUS M, KUENEN J G, JETTEN M S M. Key physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999, 65(7): 3248-3250. doi: 10.1128/AEM.65.7.3248-3250.1999 [38] LIANG W, YU C, REN H, et al. Minimization of nitrous oxide emission from CASS process treating low carbon source domestic wastewater: Effect of feeding strategy and aeration rate[J]. Bioresource Technology, 2015, 198: 172-180. doi: 10.1016/j.biortech.2015.08.075 [39] LANGONE M, FERRENTINO R, CADONNA M, et al. Stoichiometric evaluation of partial nitritation, anammox and denitrification processes in a sequencing batch reactor and interpretation of online monitoring parameters[J]. Chemosphere, 2016, 164: 488-498. doi: 10.1016/j.chemosphere.2016.08.094