-
活性污泥法作为主要的污水处理手段,已广泛应用于全国各地的污水处理厂。胞外聚合物(extracellular polymeric substances,EPS)作为活性污泥中重要组成部分,主要是聚集类微生物在代谢过程中分泌的高分子聚合物,其中蛋白质和多糖占其总量的70%~80%,而核酸、腐殖质、糖醛酸、脂类和氨基酸等物质的含量相对较低[1]。因此,EPS上的羧基、磷酰基、巯基、酚类和羟基可为有机物、重金属和抗生素等提供吸附位点[2]。与传统的去除方法相比,EPS具有环保、可再生、无毒、可降解等优点,同时可以实现污泥的资源化利用[3]。
在对EPS的诸多研究中,从活性污泥中高效提取EPS是目前研究的主要方向。常用的提取方法包括物理提取法(加热法、高速离心法、超声法)和化学提取法(酸法、碱法、EDTA法和离子交换法)。由于EPS与活性污泥絮体结合紧密,从而保护污泥絮凝体中的微生物不受外界环境变化的影响[4],因此,如何破坏EPS与活性污泥絮体的连接成为提取的关键。其中物理提取法的缺点主要是EPS产率低和蛋白质在高温下变性。化学提取法虽然提高了提取效率,但也可能污染提取的EPS或在随后的分析阶段造成影响。例如在高pH(>10)条件下,碱法导致更多的细胞裂解和大分子破坏。EDTA法中残留试剂在分光光度测定过程中对蛋白质的干扰,以及EDTA难以降解严重污染环境[5],此类方法对于污泥处理过程中EPS的常规提取不是很有效。
在本研究中,对柠檬酸钠(SC)、草酸钠(SO)、EDTA-2Na和酒石酸钾钠(SS)4种络合剂提取EPS的效果进行了比较,利用Ca2+和Mg2+作为EPS分子中不同负电荷位点连接的桥梁以稳定活性污泥絮体结构[6],通过络合剂对Ca2+、Mg2+进行络合,破坏活性污泥絮体结构进而使EPS释放[7]。再对4种络合剂提取的EPS含量和各组分特性比较,借助离子色谱仪、三维荧光光谱、红外光谱、X射线光电子能谱等表征分析手段,对相关二价阳离子浓度、EPS的光谱和能谱特性进行了表征和分析,以阐明不同络合剂提取的EPS分子结构特性。本研究结果以期为后续深入发掘络合剂对二价阳离子络合的胞外聚合物提取及应用提供参考。
不同络合剂对二价阳离子络合的胞外聚合物的提取效果比较
Comparison of the extraction effects of extracellular polymeric substances complexed with divalent cations by different complexing agents
-
摘要: 胞外聚合物(EPS)是一种环境友好的净水剂,高效提取EPS可以为吸附重金属离子及抗生素提供更多的吸附位点。本研究采用不同的络合剂去除二价阳离子以提高EPS的提取量,对柠檬酸钠(SC)法、草酸钠(SO)法、乙二胺四乙酸二钠(EDTA-2Na)法和酒石酸钾钠(SS)法提取的EPS特性进行对比。草酸钠法整体提取效率高,对EPS的组分和性质影响小,吸附效果好。柠檬酸钠和EDTA-2Na法对EPS的大分子成分造成不同程度的破坏,尤其是EDTA-2Na法明显改变了EPS的荧光特性。结合红外光谱和XPS分析证明EPS中各官能团与蛋白质、多糖等物质密切相关。研究为进一步发掘利用络合剂对二价阳离子络合提取胞外聚合物及后续应用提供理论依据和技术支持。Abstract: As an environmentally friendly water purification agent, an efficient extraction of extracellular polymeric substances (EPS) can provide more adsorption sites for heavy metal ions and antibiotics. In this study, different complexing agents were used to remove divalent cations to increase the extraction amount of EPS, and a comparison was made among the properties of extracted EPS by sodium citrate (SC), sodium oxalate (SO), disodium ethylenediaminetetraacetate (EDTA-2Na) and sodium potassium tartrate (SS) methods.The results showed that the sodium oxalate method had a highly overall extraction efficiency, a low impact on the composition and properties of EPS, and a good adsorption effect.The sodium citrate method and EDTA-2Na method caused different degrees of damage to the macromolecular components of EPS, especially the EDTA-2Na method obviously changed the fluorescence properties of EPS.The combination of IR spectroscopy and XPS analysis proved that the functional groups in EPS were close correlated with proteins, polysaccharides and other substances.This study can provide a theoretical basis and technical support for the future in-depth exploration of EPS extraction by complexation of divalent cations with complexing agents and the subsequent applications.
-
表 1 各络合剂最高提取量条件下蛋白质二级结构的含量变化
Table 1. Changes in the content of protein secondary structure at the highest extraction volume of each complexing agent
络合剂 二级结构含量/% α-螺旋 β-折叠 β-转角 无卷曲折叠 反向平行β-折叠 草酸钠 21.28 40.32 22.84 0 15.56 柠檬酸钠 15.82 44.72 32.63 0 3.79 EDTA-2Na 12.09 70.40 17.52 0 0 酒石酸钾钠 17.73 46.22 9.42 24.13 2.51 -
[1] 林伟雄, 顾海奇, 郑诗琳, 等. 不同提取方法对活性污泥胞外聚合物吸附废水中Cd(Ⅱ)效能的影响[J]. 环境工程学报, 2020, 14(3): 829-834. doi: 10.12030/j.cjee.201906126 [2] HA J, GELABERT A, SPORMANN A, et al. Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: Batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study[J]. Geochimica et Cosmochimica Acta, 2010, 4(1): 1-15. [3] WEI D, YAN T, ZHANG K Y, et al. Qualitative and quantitative analysis of extracellular polymeric substances in partial nitrification and full nitrification reactors[J]. Bioresource Technology, 2017, 240: 171-176. doi: 10.1016/j.biortech.2017.02.115 [4] LIU Y, LI J, QIU X F, et al. Bactericidal activity of nitrogen-doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS)[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2007, 190(1): 94-100. doi: 10.1016/j.jphotochem.2007.03.017 [5] XIE M, WANG C, LIU X, et al. Characteristics of biochemical and fractal structure of activated sludge with thermochemical lysis[J]. Water Air Soil Poll, 2017, 228: 187. doi: 10.1007/s11270-017-3351-3 [6] TAN P N, HILAL N, HANKINS N P, et al. The relationship between cation ions and polysaccharide on the floc formation of synthetic and activated sludge[J]. Desalination, 2008, 227(1/3): 94-102. [7] YANG G, WANG J. Enhancing biohydrogen production from waste activated sludge disintegrated by sodium citrate[J]. Fuel, 2019, 258: 116-177. [8] KEOWMANEECHAI E, MCCLEMENTS D J. Influence of EDTA and citrate on physicochemical properties of whey protein-stabilized oil-in-water emulsions containing CaCl2[J]. Journal of Agricultural and Food Chemistry, 2002, 50(24): 7145-7153. doi: 10.1021/jf020489a [9] 谢丹瑜, 康得军, 唐虹, 等. 活性污泥胞外聚合物提取方法比较与热碱法优化[J]. 环境工程学报, 2016, 10(9): 5295-5300. doi: 10.12030/j.cjee.201412239 [10] LI W M, LIAO X W, GUO J S, et al. New insights into filamentous sludge bulking: The potential role of extracellular polymeric substances in sludge bulking in the activated sludge process[J]. 2020, Chemosphere, 248: 126012. [11] FRLUND B, PALMGRENR, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 17-49. [12] PI S, LI A, WEI W, et al. Synthesis of a novel magnetic nano-scale biosorbent using extracellular polymeric substances from Klebsiella sp. J1 for tetracycline adsorption[J]. Bioresource Technology, 2017: 471-476. [13] COMTE S, GUIBAUD G, BAUDU M. Relation between extraction protocols of the activated sludge extracellular polymeric substances(EPS) and EPS complexation properties. Part I: comparison of the efficiency of eight EPS extraction properti[J]. Enzyme and Microbial Technology, 2006, 38: 237-245. doi: 10.1016/j.enzmictec.2005.06.016 [14] WANG B B, CHANG Q, PENG D C, et al. A new classification paradigm of extracellular polymeric substances(EPS)in activated sludge: Separation and characterization of exopolymers between floc level and microcolony level[J]. Water Research, 2014, 64(9): 53-60. [15] PENG L, APPELS L, SU H. Combining microwave irradiation with sodium citrate addition improves the pre-treatment on anaerobic digestion of excess sewage sludge[J]. Journal of Environmental Management, 2018, 213: 271-278. [16] XIAO B, LIU Y, LUO M, et al. Evaluation of the secondary structures of protein in the extracellular polymeric substances extracted from activated sludge by different methods[J]. Journal of Environmental Sciences, 2019, 80: 128-136. doi: 10.1016/j.jes.2018.12.003 [17] DOMINIAK D M, NIELSEN J L, NIELSEN P H. Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms[J]. Environmental Microbiology, 2011, 13(3): 710-721. doi: 10.1111/j.1462-2920.2010.02375.x [18] FLEMMING H C, HULLEBUSCH E, NEU T R, et al. The biofilm matrix: multitasking in a shared space[J]. Nature Reviews Microbiology, 2022, 21: 70-86. [19] FURIA T E. CRC Handbook of Food Additives. Vol. II[M]. English: CRC Press; 2nd edition, 1980. [20] DIGNAC M F, URBAIN V, RYBACKI D, et al. Chemical description of extracellular polymers: implication on activated sludge floc structure[J]. Water Science & Technology, 1998, 38(8-9): 45-53. [21] FORSTER C F, LEWIN D C. Polymer interactions at activated surfaces[J]. Effluent Water Treatment Journal, 1972, 12(10): 520-525. [22] 袁宇杰. 活性污泥胞外聚合物的高效提取及其对Cu2+、Pb2+吸附研究[D]. 合肥: 安徽建筑大学, 2022. [23] SANIN D, VESILIND P A. Bioflocculation of Activated Sludge: The Role of Calcium Ions and Extracellular Polymers[J]. Environmental Technology, 2000, 21(12): 1405-1412. doi: 10.1080/09593332208618170 [24] SAJJAD M, KIM K S. Extraction of extracellular polymeric substances from activated sludge using sodium oxalate[J]. International Journal of Environmental Science and Technology, 2016, 13(7): 1697-1706. doi: 10.1007/s13762-016-1004-5 [25] SAJJAD M, KIM K S. Studies on the interactions of Ca2+ and Mg2+ with EPS and their role in determining the physicochemical characteristics of granular sludges in SBR system[J]. Process Biochemistry, 2015, 50(6): 966-972. doi: 10.1016/j.procbio.2015.02.020 [26] MORTEZA B, RASMUS B, COLIN S, et al. Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation[J]. Journal of Chemometrics, 2006, 20(3/4): 99-105. [27] YU H, SONG Y, TU X, et al. Assessing removal efficiency of dissolved organic matter in wastewater treatmen t using fluorescence excitation emission matrices with parallel factor analysis and second derivative synchronous fluorescence[J]. Bioresource Technology, 2013, 144: 595-601. doi: 10.1016/j.biortech.2013.07.025 [28] LIANG Z, HAN Y Q, MEI L L, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124: 455-459. doi: 10.1016/j.biortech.2012.08.059 [29] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [30] ZHANG L H, ZHAO Q N, ZHANG M S, et al. Mg2+ distribution in activated sludge and its effects on the nitrifying activity and the characteristics of extracellular polymeric substances and sludge flocs[J]. Process Biochemistry, 2020, 88: 120-128. doi: 10.1016/j.procbio.2019.10.002 [31] MAQUELIN K, KIRSCHNER C, CHOO-SMITH L P, et al. Identification of medically relevant microorganisms by vibrational spectroscopy[J]. Journal of Microbiological Methods, 2002, 51: 255-271. doi: 10.1016/S0167-7012(02)00127-6 [32] BADIREDDY A R, CHELLAM S, GASSMAN P L, et al. Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions[J]. Water Research, 2010, 44(15): 4505-4516. doi: 10.1016/j.watres.2010.06.024 [33] GUIBAUD G, COMTE S, BDRDAS F, et al. Comparison of the complexation potential of extracellular polymeric substances(EPS) extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel[J]. Chemosphere, 2005, 59(5): 629-638. doi: 10.1016/j.chemosphere.2004.10.028 [34] JIA F X, YANG Q, LIU X H, et al. Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms[J]. Environmental Science & Technology, 2017, 51(6): 3260-3268. [35] BARTH A, ZSCHERP C. What vibrations tell us about proteins[J]. Qarterly Reviews of Biophysics, 2002, 35(4): 369-430. doi: 10.1017/S0033583502003815 [36] LONG G H, JI Y, PAN H B, et al. Characterization of thermal denaturation structure and morphology of soy glycinin by FTIR and SEM[J]. International Journal of Food Properties, 2015, 18(4): 763-774. doi: 10.1080/10942912.2014.908206 [37] GULER G, VOROBEV M M, VOGEL V, et al. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy[J]. Spectrochim Acta A, 2016, 161: 8-18. doi: 10.1016/j.saa.2016.02.013 [38] LIAO B Q, ALLEN D G, LEPPARD G G, et al. Interparticle interactions affecting the stability of sludge flocs[J]. Journal of Colloid & Interface Science, 2002, 249(2): 372-380. [39] HOU X, LIU S, ZHANG Z. Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge[J]. Water Research, 2015, 75: 51-62. doi: 10.1016/j.watres.2015.02.031 [40] AHIMOU F, BOONAERT C J P, ADRIAENSEN Y, et al. XPS analysis of chemical functions at the surface of Bacillus subtilis[J]. Colloid Interface Science, 2007, 309(1): 49-55. doi: 10.1016/j.jcis.2007.01.055 [41] 王彬斌, 于滨玮, 何锋, 等. 基于二价阳离子去除的胞外聚合物提取方法特性比较[J]. 环境科学学报, 2022, 42(10): 303-313. [42] XU H, LV H, LIU X , et al. Electrolyte cations binding with extracellular polymeric substances enhanced microcystis aggregation: Implication for microcystis bloom formation in eutrophic freshwater lakes[J]. Environmental Science & Technology, 2016: acs. est. 6b00129. [43] 赵伟. 典型有机酸络合体系中重金属的螯合吸附分离特性及解络强化[D]. 南京: 南京大学, 2018. [44] 刘文静. 呼伦贝尔褐煤黄腐酸非酸性基团分布规律研究[D]. 徐州: 中国矿业大学, 2019. [45] LI A, PI S, WEI W, et al. Adsorption behavior of tetracycline by extracellular polymeric substrates extracted from Klebsiella sp. J1[J]. Environmental Science and Pollution Research, 2016, 23(24): 25084-25092. doi: 10.1007/s11356-016-7726-6