-
近年来,随着工业生产、污水排放以及农药、饲料的使用,抗生素污染已经成为各类环境介质中普遍存在的现象。抗生素在环境中均具有持久性和毒性,对人体健康和生态环境产生潜在长期的危害[1]。土霉素(oxytetracycline, OTC)是四环素类抗生素的一种,是我国畜禽养殖业中使用量最大的抗生素,较低剂量添加时用作生长促进剂,高剂量添加时用来治疗疾病,具有用量大、残留量高、生态毒性强的特点[2]。目前对OTC的去除主要有物理化学法和生物降解法,其中氧化法、光催化法、吸附法等是较常见的物理化学方法,他们大多可降解OTC或改善其生物降解性。纳米零价铁(nano zero-valent iron, nZVI)是指粒径在1~100 nm内的零价铁颗粒,nZVI比表面积大、粒径小且表面覆盖一层铁氧化物,因而具有丰富的活性位点,对抗生素的吸附去除效率高且反应条件温和[3-6],在水环境和土壤修复中广泛应用。但nZVI在实际应用中存在着一定局限性,主要有以下3点[7-8]:nZVI粒径小、易团聚,使得其比表面积和反应活性急剧降低;nZVI在空气中极易被氧化,对制备和反应条件要求严格;nZVI在去除污染物的同时,会有铁氢氧化物等沉淀物生成并包覆在其表面,从而抑制内部nZVI进一步反应,使得在实际应用中铁粉用量远远超过理论值,造成了材料的极大浪费,增加了处理成本。
越来越多的研究人员通过绿色合成法和改性得到新型nZVI来解决上述问题[2,9-12]。绿色合成法是通过绿色原材料本身含有的功能性基团,如茶叶中的茶多酚等生物活性还原剂,将Fe2+或Fe3+还原成Fe0,同时起到分散剂和稳定剂的作用,阻止nZVI过快聚集,延长反应活性[13-14]。研究者通常对nZVI进行改性来进一步提高nZVI的稳定性。其中有机材料包埋是常用的改性方法之一,如利用聚合物,如吸水凝胶、壳聚糖等,在nZVI表面形成包裹层,增强nZVI抗氧化能力的同时也防止nZVI渗漏[15-16]。吸水凝胶作为一种优良的载体,将nZVI包埋在PPAA的三维空间网络结构中,不仅可以防止nZVI发生团聚,保持其反应性,提高其比表面积,而且能固定nZVI颗粒,便于nZVI与反应介质分离,同时在pH缓冲和抗氧化方面也表现出优良的性能[17],使nZVI在环境修复和污染处理方面具有巨大的潜力和良好的发展前景。
本研究以聚丙烯酸钠和聚丙烯酰胺的共聚物(PPAA)为载体,采用茶多酚为还原剂,合成吸水凝胶包覆型纳米零价铁(PPAA-nZVI),绿色合成的nZVI核壳结构上有茶多酚作为限制稳定剂,使核心Fe0不易被消耗,因而稳定性更高,同时环境友好可再生。此外,探究了该材料去除水中OTC的性能与机理,以期为nZVI去除OTC提供一种更简单有效的绿色合成方法。
吸水凝胶包覆型纳米零价铁对水中土霉素的去除
Removal of OTC from water using hydrogel coated nZVI
-
摘要: 为解决纳米零价铁(nZVI)在应用中易团聚、易氧化的局限,以聚丙烯酸钠和聚丙烯酰胺的共聚物(PPAA)为载体,以茶多酚为还原剂,采用绿色合成法制备吸水凝胶包覆型纳米零价铁(PPAA-nZVI),并将其用于水中土霉素(OTC)的去除。通过SEM、BET、FTIR和XPS等表征了PPAA-nZVI的微观形貌和物化性质,探讨了OTC初始质量浓度、溶液初始pH和共存物质对OTC去除效果的影响。结果表明,茶多酚能够还原制备nZVI,且成功将nZVI负载到PPAA内。随着初始OTC质量浓度的增加,OTC的去除率逐渐增加,当PPAA-nZVI投加量为0.5 g·L−1、OTC初始质量浓度为300 mg·L−1时,材料对OTC的去除量达到最大481 mg·g−1。pH对材料去除OTC的影响较小。PO43−和HA的存在对PPAA-nZVI去除OTC均有抑制作用。材料去除OTC主要通过Fenton氧化、OTC与Fe3+的络合以及材料表面活性位点的吸附3种途径。以上研究结果可为nZVI在净化污染水体中的OTC提供一种有前景的方法。Abstract: In order to solve the limitation of nanoscale zero-valent iron (nZVI) which is easy to agglomerate and oxidize in application, hydrogel coated nanoscale zero-valent iron (PPAA-nZVI) was synthesized using copolymer of polyacrylate sodium and polyacrylamide (PPAA) as the carrier and tea polyphenol as the reducing agent, and it was used to remove oxytetracycline (OTC) in water. The microscopic morphology and physicochemical properties of PPAA-nZVI composites were investigated by SEM, BET, FTIR and XPS, and the effects of initial concentration of OTC, initial pH of solution and coexisting substances on OTC removal were studied. Results showed that nZVI could be prepared by tea polyphenol reduction, and it could be successfully embedded in PPAA. The removal capacity of OTC increased gradually with the increase of initial concentration of OTC. At PPAA-nZVI dosage of 0.5 g·L−1 and OTC initial concentration of 200 mg·L−1, the maximum removal capacity of OTC reached 481 mg·g−1. pH had slight effect on the removal of OTC. The presence of PO43− and HA inhibited the removal of OTC. There were three main ways to remove OTC: Fenton oxidation, complexation of OTC with Fe3+ and adsorption of OTC on the active sites of PPAA-nZVI surface. This study presents a promising solution to remove OTC from the contaminated waterbody by nZVI.
-
Key words:
- nZVI /
- hydrogel /
- green synthesis /
- OTC
-
表 1 PPAA、PPAA-nZVI的孔性质数据
Table 1. Properties of pores in PPAA and PPAA-Nzvi
样品 BET比表面积/
(m2·g−1)BJH总孔体积/
(cm3·g−1)平均孔径/
nmPPAA 0.23 0.000 49 12.22 PPAA-nZVI 1.56 0.005 1 12.77 nZVI 6.25 0.009 57 10.89 表 2 OTC去除的准一级和准二级动力学模型拟合参数
Table 2. Pseudo-first-order and pseudo-second-order kinetic model fitting parameters for the removal of OTC
准一级动力学 准二级动力学 k1 qe/(mg·g−1) R2 k2 qe/(mg·g−1) R2 0.018 3 89.750 0.945 0.000 224 105.040 0.993 -
[1] BAUTITZ I R, VELOSA A C, NOGUEIRA R F P. Zero valent iron mediated degradation of the pharmaceutical diazepam[J]. Chemosphere, 2012, 88(6): 688-692. doi: 10.1016/j.chemosphere.2012.03.077 [2] WU N, QIAO M, ZHANG B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China[J]. Environmental Science Technology, 2010, 44(18): 6933-6939. doi: 10.1021/es1007802 [3] SHAO Y, GAO Y, YUE Q, et al. Degradation of chlortetracycline with simultaneous removal of copper (II) from aqueous solution using wheat straw-supported nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2020, 379: 122384. doi: 10.1016/j.cej.2019.122384 [4] WANG X, DU Y, MA J. Novel synthesis of carbon spheres supported nanoscale zero-valent iron for removal of metronidazole[J]. Applied Surface Science, 2016, 390: 50-59. doi: 10.1016/j.apsusc.2016.08.027 [5] LIU X, CAO Z, YUAN Z, et al. Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2018, 334: 508-518. doi: 10.1016/j.cej.2017.10.060 [6] WANG X, LIU P, MA J, et al. Preparation of novel composites based on hydrophilized and functionalized polyacrylonitrile membrane-immobilized nZVI for reductive transformation of metronidazole[J]. Applied Surface Science, 2017, 396: 841-850. doi: 10.1016/j.apsusc.2016.11.039 [7] 张唯, 沈峥, 王晨璐, 等. 纳米零价铁的改性及其在废水处理中的应用综述[J]. 净水技术, 2016, 35(4): 23-30. doi: 10.15890/j.cnki.jsjs.2016.04.004 [8] GRIEGER K D, FJORDBOGE A, HARTMANN N B, et al. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off[J]. Journal of Contaminant Hydrology, 2010, 118(3/4): 165-183. [9] CAO Z, LIU X, XU J, et al. Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron[J]. Environmental Science Technology, 2017, 51(19): 11269-11277. doi: 10.1021/acs.est.7b02480 [10] LING C, LIU F Q, XU C, et al. An integrative technique based on synergistic coremoval and sequential recovery of copper and tetracycline with dual-functional chelating resin: roles of amine and carboxyl groups[J]. ACS Applied Materials Interfaces, 2013, 5(22): 11808-11817. doi: 10.1021/am403491b [11] TUREL I. The interactions of metal ions with quinolone antibacterial agents[J]. Coordination Chemistry Reviews, 2002, 232(1/2): 27-47. [12] MA Y, ZHOU Q, ZHOU S, et al. A bifunctional adsorbent with high surface area and cation exchange property for synergistic removal of tetracycline and Cu2+[J]. Chemical Engineering Journal, 2014, 258: 26-33. doi: 10.1016/j.cej.2014.07.096 [13] 杜毅, 王向宇. 新型纳米零价铁的绿色合成和改性工艺研究进展[J]. 环境化学, 2016, 35(2): 337-347. [14] MARKOVA Z, NOVAK P, KASLIK J, et al. Iron (II, III)–polyphenol complex nanoparticles derived from green tea with remarkable ecotoxicological impact[J]. ACS Sustainable Chemistry Engineering, 2014, 2(7): 1674-1680. doi: 10.1021/sc5001435 [15] 康海彦, 杨治广, 万园园. β-环糊精包埋纳米零价铁对Cd2+的去除性能研究[J]. 环境工程, 2015, 33(5): 122-125. [16] 颜小星, 柳听义, 王中良. 壳聚糖-纳米零价铁球去除水中二价镉的研究[J]. 天津师范大学学报(自然科学版), 2014, 34(3): 42-46. [17] NADAGOUDA M N, VARMA R S. Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density-assisted self-assembly of nanospheres, wires and rods[J]. Green Chemistry, 2006, 8(6): 516-518. doi: 10.1039/b601271j [18] RUIZ P, MUNOZ M, MACANAS J, et al. Intermatrix synthesis of polymer-copper nanocomposites with tunable parameters by using copper comproportionation reaction[J]. Chemistry of materials, 2010, 22(24): 6616-6623. doi: 10.1021/cm102122c [19] LIU Q, GUO Y, CHEN Z, et al. Constructing a novel ternary Fe (III)/graphene/g-C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect[J]. Applied Catalysis B:Environmental, 2016, 183: 231-241. doi: 10.1016/j.apcatb.2015.10.054 [20] ARSHADI M, SOLEYMANZADEH M, SALVACION J, et al. Nanoscale zero-valent iron (nZVI) supported on sineguelas waste for Pb (II) removal from aqueous solution: kinetics, thermodynamic and mechanism[J]. Journal of Colloid Interface Science, 2014, 426: 241-251. doi: 10.1016/j.jcis.2014.04.014 [21] BOZOPOULOS A P, KOKKOU S C, RENTZEPERIS P J, et al. Structure of tris (2-pyridinethiolato) antimony III) (TPTA), [Sb(C5H4NS)3][J]. Acta Crystallographica Section C:Crystal Structure Communications, 1984, 40(6): 944-946. doi: 10.1107/S0108270184006351 [22] SUSANTI V E, MATSJEH S, REDJEKI T, et al. Syntheses and antioxidant activities of some hydroxy dimethoxy chalcone derivatives[J]. Indonesian Journal of Pharmacy, 2014, 25(1): 17. doi: 10.14499/indonesianjpharm25iss1pp17 [23] LORCA J, HOMS N, PISCINA P. In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts[J]. Journal of Catalysis, 2004, 227(2): 556-560. doi: 10.1016/j.jcat.2004.08.024 [24] BAIGORRI R, GARCIA J M, GONZALEZ G. Supramolecular association induced by Fe (III) in low molecular weight sodium polyacrylate[J]. Colloids Surfaces A:Physicochemical Engineering Aspects, 2007, 292(2/3): 212-216. [25] LIU T, XU Y, ZENG C. Synthesis of Bi2Fe4O9 via PVA sol-gel route[J]. Materials Science Engineering:B, 2011, 176(7): 535-539. doi: 10.1016/j.mseb.2011.01.009 [26] JIA Z, SHU Y, HUANG R, et al. Enhanced reactivity of nZVI embedded into supermacroporous cryogels for highly efficient Cr (VI) and total Cr removal from aqueous solution[J]. Chemosphere, 2018, 199: 232-242. doi: 10.1016/j.chemosphere.2018.02.021 [27] XI Y, MALLAVARAPU M, NAIDU R. Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron—a SEM, TEM and XPS study[J]. Materials Research Bulletin, 2010, 45(10): 1361-1367. doi: 10.1016/j.materresbull.2010.06.046 [28] ZHANG Y Y, JIANG H, ZHANG Y, et al. The dispersity-dependent interaction between montmorillonite supported nZVI and Cr (VI) in aqueous solution[J]. Chemical Engineering Journal, 2013, 229: 412-419. doi: 10.1016/j.cej.2013.06.031 [29] ARIAS M, GARCIA M S, GARCIA L, et al. Binding constants of oxytetracycline to animal feed divalent cations[J]. Journal of Food Engineering, 2007, 78(1): 69-73. doi: 10.1016/j.jfoodeng.2005.09.016 [30] MATIJEVIC H E. Interactions of metal hydrous oxides with chelating agents: III. Adsorption on spherical colloidal hematite particles[J]. Journal of Colloid and Interface Science, 1983, 92(2): 469-478. doi: 10.1016/0021-9797(83)90168-6 [31] BALMER M E, SULZBERGER B. Atrazine degradation in irradiated iron/oxalate systems: Effects of pH and oxalate[J]. Environmental Science & Technology, 1999, 33(14): 2418-2424. [32] WANG H, YAO H, SUN P, et al. Oxidation of tetracycline antibiotics induced by Fe (III) ions without light irradiation[J]. Chemosphere, 2015, 119: 1255-1261. doi: 10.1016/j.chemosphere.2014.09.098 [33] FIGUEROA R A, MACKAY A A. Sorption of oxytetracycline to iron oxides and iron oxide-rich soils[J]. Environmental Science Technology, 2005, 39(17): 6664-6671. doi: 10.1021/es048044l [34] ZHANG H, HUANG C H. Reactivity and transformation of antibacterial N-oxides in the presence of manganese oxide[J]. Environmental Science Technology, 2005, 39(2): 593-601. doi: 10.1021/es048753z [35] 李道荣, 牛振华, 包瑞格, 等. Fenton试剂氧化降解水中的盐酸四环素[J]. 环境工程学报, 2017, 11(4): 2227-2232. [36] 吴宇炜. 改性零价铁的制备及其处理四环素类和氯霉素类抗生素废水的研究[D]. 济南: 山东大学, 2018. [37] CHEN Q, WU S, XIN Y. Synthesis of Au–CuS–TiO2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline[J]. Chemical Engineering Journal, 2016, 302: 377-387. doi: 10.1016/j.cej.2016.05.076 [38] LI Q, ZHAO S, WANG Y. Mechanism of oxytetracycline removal by coconut shell biochar loaded with nano-zero-valent iron[J]. International Journal of Environmental Research Public Health, 2021, 18(24): 13107. doi: 10.3390/ijerph182413107 [39] LI R, JIA Y, WU J, et al. Photocatalytic degradation and pathway of oxytetracycline in aqueous solution by Fe 2 O 3–TiO 2 nanopowder[J]. Rsc Advances, 2015, 5(51): 40764-40771. doi: 10.1039/C5RA04540A [40] LIU Y, HE X, FU Y, et al. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate[J]. Journal of Hazardous Materials, 2016, 305: 229-239. doi: 10.1016/j.jhazmat.2015.11.043 [41] ZHANG Y, JIANG Q, JIANG S M, et al. One-step synthesis of biochar supported nZVI composites for highly efficient activating persulfate to oxidatively degrade atrazine[J]. Chemical Engineering Journal, 2021, 420: 129868. doi: 10.1016/j.cej.2021.129868 [42] TRAN M L, NGUYEN C H, TRAN T T V, et al. One-pot synthesis of bimetallic Pt/nZVI nanocomposites for enhanced removal of oxytetracycline: Roles of morphology changes and Pt catalysis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111: 130-140. doi: 10.1016/j.jtice.2020.05.001