-
减少废水中的氮化合物是改善水环境和水质的重要措施之一[1]。与传统硝化/反硝化工艺相比,短程硝化/厌氧氨氧化(partial nitrification/anaerobic ammonia oxidation, PN/A)工艺可以将脱氮需氧量降低50%,有机碳需求量降低100%,污泥产量降低90%[2-3]。因此,PN/A工艺被认为是最经济、最有前景的脱氮工艺[4]。
反应器内生物质的保留能力对厌氧氨氧化(Anammox)工艺的启动周期有着重要影响[5]。据报道,颗粒和生物膜污泥都具备良好的生物质截留能力[6-7],但已知这两种污泥形式分别单独运行时都会存在较长的启动时间[8-9]。生物膜系统形成周期短,但长期运行后载体上太厚的生物膜会导致生物质脱落并被水流冲刷[7]。Anammox颗粒污泥的形成是一个漫长的过程,但可以有效地拦截污泥流失并保持较高的生物量[10]。因此,生物膜和颗粒污泥的组合应用可能最大程度上保留反应器内生物质,从而实现PN/A的快速启动和功能菌的高效富集。然而,将好氧生物膜和厌氧颗粒相结合来启动PN/A工艺目前尚未见报道。。
不同于传统的单阶段和两阶段PN/A反应器,在多级PN/A反应器中,交替的缺氧室和好氧室不仅为 (anaerobic ammonia oxidizing bacteria(AnAOB)和ammonia oxidizing bacteria(AOB)这2种功能细菌的同时生长和富集提供了空间条件,而且在缺氧区亚硝酸盐氮(NO2−-N)和氨氮(NH4+-N)共存的环境有利于厌氧氨氧化菌的自然富集[7-8]。此外,实现PN/A工艺的关键不仅需要同时富集AOB和AnAOB,还必须尽可能抑制亚硝酸盐氧化菌(nitrite oxidizing bacteria,NOB)活性[11]。据报道,间歇曝气和pH控制等策略可以有效控制PN/A工艺中不同菌群的活性(富集AnAOB和AOB,抑制NOB)[12]。然而,具有间歇曝气、pH控制、多级反应器和生物膜/颗粒污泥系统等优点的组合PN/A反应器的运行策略仍需要研究。
本研究构建了由3个好氧反应柱和3个厌氧反应柱组成的新型多级好氧生物膜/厌氧颗粒反应器(multistage aerobic-biofilm/anaerobic-granular sludge reacto, MOBAPR),以同时促进AnAOB和AOB的富集。本研究的主要目的为:拟通过MOBAPR实现PN/A工艺的快速启动和高效运行;考察MOBAPR各反应柱的氮转化过程;探索不同MOBAPR柱中功能菌丰度的变化和微生物群落结构的差异;通过优化气液比(gas/liquid ratio, G/L),进一步提高PN/A工艺的脱氮效率(nitrogen removal efficiency, NRE)。
多级好氧生物膜/厌氧颗粒反应器的PN/A工艺启动与调控
Start-up and regulation of PN/A process in a multi-stage aerobic-biofilm/anoxic-particle reactor
-
摘要: 厌氧氨氧化细菌(AnAOB)和氨氧化细菌(AOB)的同时快速富集是短程硝化/厌氧氨氧化(PN/A)工艺高效运行的关键。本研究构建了一种多级好氧生物膜/厌氧颗粒污泥反应器(MOBAPR)。MOBAPR的好氧生物膜/厌氧颗粒结构不仅可有效保留生物质,还为AnAOB和AOB同时富集创造空间条件。在MOBAPR中,首先通过控制pH和间歇曝气在15 d内实现PN工艺的快速启动,然后在稳定运行的PN工艺基础上,61 d后实现了PN/A工艺的快速启动,脱氮率达到(83.41±2.45)%。16S rRNA基因测序结果表明,MOBAPR中AOB(27.09%)和AnAOB(9.99%)成功实现同时富集。此外,在PN/A工艺运行过程中,气液比(曝气速率与进水速率的比值)是一个与NRE高度相关的操作参数。气液比的优化控制不仅可以提高MOBAPR的脱氮性能,还可以在溶解氧(DO)低至无法控制时代替DO控制。Abstract: The simultaneous and rapid enrichment of anaerobic ammonia-oxidizing bacteria (AnAOB) and ammonia-oxidizing bacteria (AOB) is the key to efficiently perform the partial nitrification/anaerobic ammonia oxidation (PN/A) process. In this study, a multistage aerobic-biofilm/anaerobic-granular sludge reactor (MOBAPR) was constructed. The aerobic-biofilm/anaerobic-particle structure of MOBAPR not only effectively retains biomass, but also provides the spatial conditions for simultaneous enrichment of AnAOB and AOB. In MOBAPR, fast start-up of the PN process was achieved by controlling pH and intermittent aeration within 15 days. Then on the basis of the stable running of PN process, the rapid start of PN/A process was accomplished 61 days later, and the nitrogen removal efficiency (NRE) reached (83.41±2.45)%. 16S rRNA gene sequencing revealed that the simultaneous enrichment of AOB (27.09%) and AnAOB (9.99%) in MOBAPR occurred. During the operation of the PN/A process, The Gas/Liquid ratio (aeration rate to water inflow rate) was an operational parameter highly correlated (0.992) with NRE. The optimal control of G/L can not only improve the nitrogen removal performance of MOBAPR, but also replace DO control when DO is too low to control.
-
表 1 实验条件及操作参数
Table 1. Experimental conditions and operating parameters
时期 阶段 时间/d HRT/h 曝气量/(L·min−1) 好氧(厌氧)时间/min 好氧区DO/(mg·L−1) 回流比/% 适应期 I 1~7 24 0.02 好氧 — 200 PN 启动期 II 8~15 12 0.05 80/40 0.5±0.2 100 PN运行期 III 16~60 12/8 0.05 80/40 0.5±0.2 0 PN/A 启动期 IV 61~86 8 0.08 90/30 0.0±0.2 0 PN/A运行期 V 87~110 6 0.10 90/30 0.0±0.1 0 气液调控期 VI 111~162 — — 90/30 — 0 注:表中曝气量和DO值均为好氧区(Rc1、Rc3和Rc5)的平均值;“—”表示无法检测。 表 2 微生物多样性分析
Table 2. Microbial diversity analysis
阶段 样品 序列数 丰富度 OTU数 多样性 覆盖率/% Ace指数 Chao1指数 Simpson指数 Shannon指数 I A0 52 844 913.5 933.6 841 0.07 4.27 99.8 III A1 57 036 886 863 724 0.11 3.48 99.7 A2 64 451 1 006.4 1 024.1 877 0.05 4.13 99.7 A3 70 746 891 932.1 751 0.16 3.05 99.7 A4 54 252 949.5 953.5 801 0.08 3.78 99.7 A5 59 513 899.5 902.3 786 0.18 3.13 99.7 A6 52 884 962.5 1 003.1 842 0.07 3.99 99.7 V B1 61 553 844.7 837.2 666 0.12 3.21 99.7 B2 64 627 892.2 896.5 742 0.09 3.57 99.7 B3 75 032 845.7 863.1 692 0.11 3.2 99.8 B4 62 284 900.8 909.7 764 0.06 3.86 99.7 B5 62 838 853.3 852 703 0.21 2.84 99.7 B6 59 777 984.9 1 014.6 851 0.13 3.64 99.7 注:A1、A3、A5、B1、B3和B5是来自好氧区的污泥样品;A2、A4、A6、B2、B4和B6是来自厌氧区的污泥样品。 -
[1] AHN Y-H. Sustainable nitrogen elimination biotechnologies: A review[J]. Process Biochemistry, 2006, 41(8): 1709-1721. doi: 10.1016/j.procbio.2006.03.033 [2] XU Y, XU Y, LI T, et al. Two-step partial nitrification-anammox process for treating thermal-hydrolysis anaerobic digester effluent: Start-up and microbial characterisation[J]. Journal of Cleaner Production, 2020, 252: 119784. doi: 10.1016/j.jclepro.2019.119784 [3] FENG Z, WU G. Start-up of anammox systems with different feeding patterns: System performance, microbial community and potential microbial interactions[J]. Journal of Water Process Engineering, 2021, 39: 101694. doi: 10.1016/j.jwpe.2020.101694 [4] CHEN G, ZHANG Y, WANG X, et al. Optimizing of operation strategies of the single-stage partial nitrification-anammox process[J]. Journal of Cleaner Production, 2020, 256: 120667. doi: 10.1016/j.jclepro.2020.120667 [5] WANG T, WANG X, YUAN L, et al. Start-up and operational performance of Anammox process in an anaerobic baffled biofilm reactor (ABBR) at a moderate temperature[J]. Bioresource Technology, 2019, 279: 1-9. doi: 10.1016/j.biortech.2019.01.114 [6] ANTMI P, ZHANG D, SU H, et al. Nitrogen removal from landfill leachate by single-stage anammox and partial-nitritation process: effects of microaerobic condition on performance and microbial activities[J]. Journal of Water Process Engineering, 2020, 38: 101572. doi: 10.1016/j.jwpe.2020.101572 [7] CAI F, LEI L, LI Y. Rapid start-up of single-stage nitrogen removal using anammox and partial nitritation (SNAP) process in a sequencing batch biofilm reactor (SBBR) inoculated with conventional activated sludge[J]. International Biodeterioration & Biodegradation, 2020, 147: 104877. [8] DU R, CAO S, ZHANG H, et al. Formation of partial-denitrification (PD) granular sludge from low-strength nitrate wastewater: The influence of loading rates[J]. Journal of Hazardous Materials, 2020, 384: 121273. doi: 10.1016/j.jhazmat.2019.121273 [9] LI Y Y, HUANG X W, LI X Y. Using anammox biofilms for rapid start-up of partial nitritation-anammox in integrated fixed-film activated sludge for autotrophic nitrogen removal[J]. Science of the Total Environment, 2021, 791: 148314. doi: 10.1016/j.scitotenv.2021.148314 [10] CHEN C, JIANG Y, LIU J, et al. The structure of anammox granular sludge under varying long-term organic matter stress: Performance, physiochemical and microbial community[J]. Journal of Cleaner Production, 2021, 323: 129117. doi: 10.1016/j.jclepro.2021.129117 [11] KUAI, V,. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system[J]. Applied and environmental microbiology, 1998, 64(11): 4500-6. doi: 10.1128/AEM.64.11.4500-4506.1998 [12] MIAO Y, ZHANG L, YU D, et al. Application of intermittent aeration in nitrogen removal process: Development, advantages and mechanisms[J]. Chemical Engineering Journal, 2022, 430: 133184. doi: 10.1016/j.cej.2021.133184 [13] ZHANG D, SU H, ANTMI P, et al. High-rate partial-nitritation and efficient nitrifying bacteria enrichment/out-selection via pH-DO controls: Efficiency, kinetics, and microbial community dynamics[J]. Science of The Total Environment, 2019, 692: 741-755. doi: 10.1016/j.scitotenv.2019.07.308 [14] SU H, ZHANG D, ANTMI P, et al. Unraveling the effects of light rare-earth element (Lanthanum (III)) on the efficacy of partial-nitritation process and its responsible functional genera[J]. Chemical Engineering Journal, 2021, 408: 127311. doi: 10.1016/j.cej.2020.127311 [15] SU H, ZHANG D, ANTMI P, et al. Adaptation, restoration and collapse of anammox process to La(III) stress: Performance, microbial community, metabolic function and network analysis[J]. Bioresource Technology, 2021, 325: 124731. doi: 10.1016/j.biortech.2021.124731 [16] SU H, ZHANG D, ANTMI P, et al. Exploring potential impact(s) of cerium in mining wastewater on the performance of partial-nitrification process and nitrogen conversion microflora[J]. Ecotoxicology and Environmental Safety, 2021, 209: 111796. doi: 10.1016/j.ecoenv.2020.111796 [17] CHI Y, ZHANG X, SHI X, et al. Quick start-up of partial nitrification in a novel anaerobic/ pulse washout (APW) process for treating municipal wastewater[J]. Journal of Cleaner Production, 2021, 285: 124850. doi: 10.1016/j.jclepro.2020.124850 [18] LUCKER S, WAGNER M, MAIXNER F, et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(30): 13479-13484. doi: 10.1073/pnas.1003860107 [19] MIAO Y, ZHANG J, PENGY, et al. An improved start-up strategy for mainstream anammox process through inoculating ordinary nitrification sludge and a small amount of anammox sludge[J]. Journal of Hazardous Materials, 2020, 384: 121325. doi: 10.1016/j.jhazmat.2019.121325 [20] VARAS R, GUZM V, GIUSTINIANOVICH E, et al. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor[J]. Bioresource Technology, 2015, 190: 345-351. doi: 10.1016/j.biortech.2015.04.086 [21] ZUO F, SUI Q, ZHENG R, et al. In situ startup of a full-scale combined partial nitritation and anammox process treating swine digestate by regulation of nitrite and dissolved oxygen[J]. Bioresource Technology, 2020, 315: 123837. doi: 10.1016/j.biortech.2020.123837 [22] YIN X, RAHAMAN M H, LIU W, et al. Comparison of nitrogen and VFA removal pathways in autotrophic and organotrophic anammox reactors[J]. Environmental Research, 2021, 197: 111065. doi: 10.1016/j.envres.2021.111065