-
铬污染主要来源于采矿、金属加工、电镀、印染等工业废水,主要以Cr(VI)的形式长期稳定存在于生态系统中[1-2]。亚硫酸盐(S(IV))是常用的工业还原剂之一,能有效还原Cr(VI)(式(1)~(3))[3],并且亚硫酸盐还原Cr(VI)技术已在实际工程广泛使用(《钢铁行业采选矿工艺污染防治最佳可行技术指南(试行)》HJ-BAT-003)。有研究[4-5]表明,S(IV)与Cr(VI)的反应过程中会产生一系列活性自由基,如SO3·−、SO4·−和SO5·−等(式(4)~(10)),可用于氧化废水中共存的抗生素、酚类和染料等有机污染物,对废水进行同步氧化和还原处理[6-8]。
然而,在S(IV)活化过程中,SO32−/HSO3-极易与产生的自由基SOx·−发生副反应,造成自由基内耗(式(8)~(10)),从而抑制S(IV)体系中污染物的氧化。前期的研究[13]表明,葡萄糖基碳材料可以催化活化S(IV)产生硫氧自由基氧化污染物,其活化可能是通过S(IV)与碳材料上的官能团络合并发生分子内电子移动完成的。如果将葡萄糖基碳材料引入Cr(VI)/S(IV)体系,Cr(VI)与S(IV)反应生成CrSO62−,并有可能与碳材料表面官能团发生配位,生成的不稳定络合物自分解产生自由基[14-16],从而强化Cr(VI)/S(IV)体系对污染物的氧化降解作用,同时在空间上抑制与SOx·−的副反应,减少自由基内耗,为强化Cr(VI)/S(IV)体系降解有机污染物提供思路。
基于此,本研究采用双氯芬酸(diclofenac,DCF)为目标污染物,研究葡萄糖衍生碳材料强化Cr(VI)/S(IV)体系氧化降解污染物的性能,并深入探究了其促进机理。以期为Cr(VI)和S(IV)的有效利用,以及碳材料强化Cr(VI)/S(IV)体系的实际应用提供参考。
葡萄糖衍生碳材料强化Cr(VI)/亚硫酸盐体系降解水体中双氯芬酸效能与机理
Degradation efficiency and mechanism of diclofenac in waterbody by Cr(VI)/sulfite system strengthened by glucose derived carbon materials
-
摘要: 亚硫酸盐(S(IV))常用于水体中Cr(VI)的还原解毒,在此过程中伴随着SOx·−的产生,可实现水体中有机污染物的同步氧化,但效率不高。本研究以葡萄糖为前驱体,通过简单热解制备无金属碳材料(C-1000),探究在中性条件下C-1000对Cr(VI)/S(IV)体系的促进效果和机理。结果表明,30 min内,在C-1000投加量为0.1 g·L−1时可将目标污染物双氯芬酸(diclofenac, DCF)的去除率由63%显著提高至100%,反应速率提升3.4倍。淬灭实验和EPR实验结果证实SO4·−和·OH共同参与污染物的氧化降解过程,其中SO4·−为主要活性物种,·OH次之。FTIR和XPS表征结果表明,C-1000表面—COOH可能与CrSO62−配位形成三元络合物,利用碳材料的优良导电性,促进络合物分子的内部电子转移,加快SO3·−的产生速率,并通过链式反应促进溶液中SO4·−的产生,以此增强对有机物的降解效果。通过氧化还原处理调控材料表面—COOH含量,建立构效关系进一步验证—COOH的CrSO62−配位作用。Abstract: Sulfite (S(IV)) is commonly used for the reduction detoxification of Cr(VI) in waterbody with the production of SOx·−, which can synchronously oxidize the organic pollutants in water, but the efficiency is low. In this study, glucose was used as a precursor to prepare metal-free carbon materials (C-1000) through pyrolysis, and the promotion effect and mechanism of C-1000 on Cr(VI)/S(IV) system under neutral conditions was explored. The results showed that the degradation efficiency of diclofenac (diclofenac, DCF) was significantly increased from 63% to 100% within 30 min when the dosage of C-1000 was 0.1 g·L−1, and the removal rate was 3.4 times higher than Cr(VI)/S(IV) system. Radical scavenging experiments and EPR results confirmed that both SO4·− and ·OH participated the degradation of DCF, and SO4·− was the main reactive oxygen species, ·OH was followed. The results of FTIR and XPS characterization suggested that —COOH on C-1000 surface may coordinate with CrSO62− to form ternary complexes. The excellent electrical conductivity of C-1000 could facilitate the internal electron transfer of the complexes and accelerate the generation of SO3·− followed by the production of SO4·− via chain reaction, thus the organic degradation effect was strengthened. The quantitative structure-activity relationships of the C-1000/Cr(VI)/S(IV) system were established to further verify the complexation between CrSO62− and —COOH by regulating the —COOH content on the surface through the redox treatment.
-
Key words:
- carbon /
- sulfite /
- Cr(VI) /
- diclofenac degradation /
- degradation mechanism
-
-
[1] GIL-CARDEZA M L, FERRI A, CORNEJO P, et al. Distribution of chromium species in a Cr-polluted soil: Presence of Cr(III) in glomalin related protein fraction[J]. Science of the Total Environment, 2014, 493: 828-33. doi: 10.1016/j.scitotenv.2014.06.080 [2] CONG Y Q, SHEN L D, WANG B M, et al. Efficient removal of Cr(VI) at alkaline pHs by sulfite/iodide/UV: Mechanism and modeling[J]. Water Research, 2022, 222: 118919. doi: 10.1016/j.watres.2022.118919 [3] DONG H Y, WEI G F, CAO T C, et al. Insights into the oxidation of organic cocontaminants during Cr(VI) reduction by sulfite: The overlooked significance of Cr(V)[J]. Environmental Science & Technology, 2020, 54(2): 1157-1166. [4] HAIGHT G P, PERCHONOCK E, EMMENEGGER F, et al. The mechanism of the oxidation of sulfur(IV) by chromium in acid solution[J]. Journal of the American Chemical Society, 1965, 87: 3835-3840. doi: 10.1021/ja01095a009 [5] BRANDT C, ELDING L I. Role of chromium and vanadium in the atmospheric oxidation of sulfur(IV)[J]. Atmospheric Environment, 1998, 32: 797-800. doi: 10.1016/S1352-2310(97)00331-2 [6] JIANG B, LIU Y K, ZHENG J T, et al. Synergetic transformations of multiple pollutants driven by Cr(VI)-sulfite reactions[J]. Environmental Science & Technology, 2015, 49(20): 12363-71. [7] YUAN Y N, YANG S J, ZHOU D N, et al. A simple Cr(VI)-S(IV)-O2 system for rapid and simultaneous reduction of Cr(VI) and oxidative degradation of organic pollutants[J]. Journal of Hazardous Materials, 2016, 307: 294-301. doi: 10.1016/j.jhazmat.2016.01.012 [8] DONG H Y, WEI G F, FAN W J, et al. Reinvestigating the role of reactive species in the oxidation of organic co-contaminants during Cr(VI) reactions with sulfite[J]. Chemosphere, 2018, 196: 593-597. doi: 10.1016/j.chemosphere.2017.12.194 [9] BUXTON G V, MCGOWAN S, SALMON G A, et al. A study of the spectra and reactivity of oxysulphur-radical anions involved in the chain oxidation of S(IV): A pulse and γ-radiolysis study[J]. Atmospheric Environment, 1996, 30: 2483-2493. doi: 10.1016/1352-2310(95)00473-4 [10] WARNECK P, ZIAJKA J. Reaction mechanism of the iron(III)-catalyzed autoxidation of bisulfite in aqueous solution: Steady state description for benzene as radical scavenger[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1995, 99: 59-65. [11] ZHANG J M, MA J, SONG H R, et al. Organic contaminants degradation from the S(IV) autoxidation process catalyzed by ferrous-manganous ions: A noticeable Mn(III) oxidation process[J]. Water Research, 2018, 133: 227-235. doi: 10.1016/j.watres.2018.01.039 [12] DAS T N. Reactivity and role of SO5•– radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation[J]. Journal of Physical Chemistry A, 2001, 105: 9142-9155. doi: 10.1021/jp011255h [13] ZHANG Y, YANG W, ZHANG K K, et al. Sulfite activation by glucose-derived carbon catalysts for As(III) oxidation: The role of ketonic functional groups and conductivity[J]. Environmental Science & Technology, 2021, 55(17): 11961-11969. [14] WANG Z H, MA W H, CHEN C C, et al. Photochemical coupling reactions between Fe(III)/Fe(II), Cr(VI)/Cr(III), and polycarboxylates: Inhibitory effect of Cr species[J]. Environmental Science & Technology, 2008, 42(19): 7260-7266. [15] KRISHNAMURTY K V. , HARRIS G M. The chemistry of the metal oxalato complexes[J]. Chemical Reviews, 1961, 61(3): 213-246. doi: 10.1021/cr60211a001 [16] JIANG B, WANG X L, LIU Y K, et al. The roles of polycarboxylates in Cr(VI)/sulfite reaction system: Involvement of reactive oxygen species and intramolecular electron transfer[J]. Journal of Hazardous Materials, 2016, 304: 457-66. doi: 10.1016/j.jhazmat.2015.11.011 [17] LI N, MA X L, ZHA Q F, et al. Maximizing the number of oxygen-containing functional groups on activated carbon by using ammonium persulfate and improving the temperature-programmed desorption characterization of carbon surface chemistry[J]. Carbon, 2011, 49(15): 5002-5013. doi: 10.1016/j.carbon.2011.07.015 [18] GOSCIANSKA J, OLEJNIK A, NOWAK I, et al. Stability analysis of functionalized mesoporous carbon materials in aqueous solution[J]. Chemical Engineering Journal, 2016, 290: 209-219. doi: 10.1016/j.cej.2016.01.060 [19] GAN G Q, FAN S Y, LI X Y, et al. Effects of oxygen functional groups on electrochemical performance of carbon materials for dechlorination of 1, 2-dichloroethane to ethylene[J]. Chemical Engineering Journal, 2022, 434: 134547. doi: 10.1016/j.cej.2022.134547 [20] REN Y, YUAN Z L, LV K, et al. Selective and metal-free oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran over nitrogen-doped carbon materials[J]. Green Chemistry, 2018, 20(21): 4946-4956. doi: 10.1039/C8GC02286K [21] ZHANG K K, SUN P, FAYE M C A S, et al. Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation[J]. Carbon, 2018, 130: 730-740. doi: 10.1016/j.carbon.2018.01.036 [22] ZHANG K K, KHAN A, SUN P, et al. Simultaneous reduction of Cr(VI) and oxidization of organic pollutants by rice husk derived biochar and the interactive influences of coexisting Cr(VI)[J]. Science of the Total Environment, 2020, 706: 135763. doi: 10.1016/j.scitotenv.2019.135763 [23] GU Y, LI H X, LIU L X, et al. Constructing CNTs-based composite membranes for oil/water emulsion separation via radiation-induced “grafting to” strategy[J]. Carbon, 2021, 178: 678-687. doi: 10.1016/j.carbon.2021.03.051 [24] LIU Y J. Simultaneous oxidation of phenol and reduction of Cr(VI) induced by contact glow discharge electrolysis[J]. Journal of Hazardous Materials, 2009, 168(2/3): 992-6. [25] LUO T, PENG Y, CHEN L, et al. Metal-free electro-activated sulfite process for As(III) oxidation in water using graphite electrodes[J]. Environmental Science & Technology, 2020, 54(16): 10261-10269. [26] KHAN A, WANG H B, LIU Y, et al. Highly efficient α-Mn2O3@α-MnO2-500 nanocomposite for peroxymonosulfate activation: comprehensive investigation of manganese oxides[J]. Journal of Materials Chemistry A, 2018, 6(4): 1590-1600. doi: 10.1039/C7TA07942G [27] GHOSH M C, GELERINTER E, GOULD E S. Electron Transfer. 111. Disproportionation of carboxylato-bound chromium(IV). Catalysis by Manganese(II)[J]. American Chemical Society, 1992, 31: 702-705. [28] JIANG B, HE H H, LIU Y J, et al. pH-dependent roles of polycarboxylates in electron transfer between Cr(VI) and weak electron donors[J]. Chemosphere, 2018, 197: 367-374. doi: 10.1016/j.chemosphere.2018.01.047 [29] ZHANG K K, SUN P, ZHANG Y, et al. Enhancement of S(IV)-Cr(VI) reaction in p-nitrophenol degradation using rice husk biochar at neutral conditions[J]. Science of the Total Environment, 2020, 749: 142086. doi: 10.1016/j.scitotenv.2020.142086 [30] HUBER C F, HAIGHT G P. The oxidation of manganese(II) by chromium(VI) in the presence of oxalate ion[J]. Journal of the American Chemical Society, 1976, 98(14): 4128-4131. doi: 10.1021/ja00430a019 [31] JOHNSTON C P, CHRYSOCHOOU M. Mechanisms of chromate adsorption on hematite[J]. Geochimica et Cosmochimica Acta, 2014, 138: 146-157. doi: 10.1016/j.gca.2014.04.030 [32] HU P D, SU H R, CHEN Z Y, et al. Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation[J]. Environmental Science & Technology, 2017, 51(19): 11288-11296. [33] CHOPPALA G, BOLAN N, KUNHIKRISHNAN A, et al. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate[J]. Chemosphere, 2016, 144: 374-81. doi: 10.1016/j.chemosphere.2015.08.043 [34] SUMARAJ, XIONG Z X, SARMAH A K, et al. Acidic surface functional groups control chemisorption of ammonium onto carbon materials in aqueous media[J]. Science of the Total Environment, 2020, 698: 134193. doi: 10.1016/j.scitotenv.2019.134193