-
草甘膦 (N-phosphonomethylglycine, PMG)[1-2]是一种广谱灭生性、内吸传导性的典型溶解态有机磷 (dissolved organic phosphorus DOP) 除草剂,具有高效、广谱、低毒的优点[3]。然而,PMG分子高度的流动性和水溶性[4]使其在施用后以城市径流、雨水冲刷[5]、过度喷洒等形式潜入水循环系统,广泛污染于各类水体环境中[6-7]。当前,价廉且高效的吸附材料研发已成为吸附去除有机磷的主要研究之一。利用废弃物制备新型、廉价、“绿色”吸附剂是研究热点[8-9],牡蛎壳是一种产量高且含有丰富CaCO3和大量微孔的天然壳体。研究发现,对牡蛎壳粉改性后其比表面积更大,可高效吸附水体中的有机磷[10]。然而,牡蛎壳粉只能将有机磷从水相转移至固相,并未实现降解,其毒害作用仍将对环境造成长期潜在风险。
光催化技术可以将有机磷分解为溶解态无机磷、CO2和H2O等小分子[11]。其中金属离子和非金属离子掺杂改性TiO2不仅具备化学稳定性高、成本低、无毒等优势,同时能有效弥补TiO2的缺陷,实现在可见光波长范围内响应,降低光生载流子复合率[12]。其中,铈离子 (Ce3+/Ce4+) 是4种最丰富的稀土金属之一,价格便宜且无毒,被认为是修饰TiO2晶体和电子结构、改变光学性质,提高量子产率的理想掺杂剂[13-15]。其次,在TiO2晶格中掺杂氮元素可以减小禁带宽度[16],光响应范围向可见光区域红移[17]。因此,将Ce和N掺杂于TiO2并将其负载在改性牡蛎壳粉上,研究其在模拟太阳光下吸附-光催化协同降解PMG的降解性能显得尤为必要。
本研究采用水热法制备改性牡蛎壳粉/Ce-N-TiO2 (CeNT@Oys)复合光催化剂,借助SEM、BET、XPS等手段对其表面的形貌和结构进行了表征分析;以PMG为目标去除物,研究了CeNT@Oys吸附-光催化协同降解PMG的性能,进行协同作用评价与分析,并考察不同pH、温度、复合光催化剂投加量等影响因素对协同作用的影响,以期为水体中有机磷类农药的高效、彻底去除提供参考。
改性牡蛎壳粉/Ce-N-TiO2吸附-光催化降解草甘膦
Adsorption-photocatalysis degradation of glyphosate by the modified oyster shell powder/Ce-N-TiO2
-
摘要: 通过水热法成功制备了改性牡蛎壳粉/Ce-N-TiO2复合光催化剂,采用扫描电子显微镜、比表面积测试和X射线光电子能谱分析对其微观形貌、物化性质进行表征分析,并研究其在模拟太阳光下吸附-光催化协同降解草甘膦的降解性能。结果表明:改性牡蛎壳粉单独吸附与Ce-N-TiO2单独光催化叠加理论降解率低于复合光催化剂协同作用降解率,充分证明两者复合后具有良好的吸附-光催化协同作用;在前120 min内复合材料的降解速率明显高于理论叠加曲线的降解速率,光催化降解草甘膦中有机磷的速率常数由1.179×10−2 min−1提升至2.441×10−2 min−1;在实验范围内,改性牡蛎壳粉/Ce-N-TiO2吸附-光催化协同降解草甘膦的最佳反应条件为:pH为5、实验温度为35 ℃、催化剂投加量为1.0 g·L−1、磁力搅拌器转速为300 r·min−1、光功率设定为400 W。Abstract: The modified oyster shell powder/Ce-N-TiO2(CeNT@Oys) composite photocatalyst was successfully prepared by the hydrothermal method. Its micro-morphology and physicochemical properties were characterized and analyzed by scanning electron microscopy (SEM), specific surface area test (BET) and X-ray photoelectron spectroscopy (XPS), and its degradation performance of glyphosate under the simulated sunlight was studied. The results showed that the sum of the theoretical degradation rates of modified oyster shell powder adsorbed alone and Ce-N-TiO2 photocatalyst alone was lower than that of composite photocatalyst, which fully proved that the composite photocatalyst had a good adsorption-photocatalysis synergistic effect; The degradation rate of the composite in the first 120 min was obviously higher than the sum of the theoretical degradation curves. The photocatalysis rate constant for organic phosphorus during photocatalysis degradation of glyphosate process increased from 1.179×10−2 min−1 to 2.441×10−2 min−1. Within the test range, the optimal reaction conditions for the synergistic degradation of glyphosate by CeNT@Oys adsorption photocatalysis were: pH=5, 35 ℃, catalyst dosage of 1.0 g·L−1, rotating speed of magnetic stirrer of 300 r·min−1 and the set optical power of 400 W.
-
Key words:
- composite photocatalysts /
- glyphosate /
- adsorption /
- photocatalytic degradation /
- synergistic reaction
-
-
[1] GILL J P K, SETHI N, MOHAN A, et al. Glyphosate toxicity for animals[J]. Environmental Chemistry Letters, 2017, 16(2): 401-426. [2] 孟秀柔, 宋青梅, 王飞, 等. 草铵膦和草甘膦在水环境中的行为和毒性效应研究进展[J]. 生态毒理学报, 2021, 16(3): 144-154. [3] ESPINOZA-MONTERO P J, VEGA-VERDUGA C, ALULEMA-PULLUPAXI P, et al. Technologies Employed in the Treatment of Water Contaminated with Glyphosate: A Review[J]. Molecules, 2020, 25(23): 5550-5576. doi: 10.3390/molecules25235550 [4] BONANSEA R I, FILIPPI I, WUNDERLIN D A, et al. The Fate of Glyphosate and AMPA in a Freshwater Endorheic Basin: An Ecotoxicological Risk Assessment[J]. Toxics, 2017, 6(1): 3-16. doi: 10.3390/toxics6010003 [5] VILLAMAR-AYALA C A, CARRERA-CEVALLOS J V, VASQUEZ-MEDRANO R, et al. Fate, eco-toxicological characteristics, and treatment processes applied to water polluted with glyphosate: A critical review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(16): 1476-1514. doi: 10.1080/10643389.2019.1579627 [6] BATTAGLIN W A, MEYER M T, KUIVILA K M, et al. Glyphosate and Its Degradation Product AMPA Occur Frequently and Widely in U. S. Soils, Surface Water, Groundwater, and Precipitation[J]. JAWRA Journal of the American Water Resources Association, 2014, 50(2): 275-290. doi: 10.1111/jawr.12159 [7] RUIZ-TOLEDO J, CASTRO R, RIVERO-PEREZ N, et al. Occurrence of glyphosate in water bodies derived from intensive agriculture in a tropical region of southern Mexico[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 93(3): 289-293. doi: 10.1007/s00128-014-1328-0 [8] JIANG N, SHANG R, HEIJMAN S G J, et al. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review[J]. Water Res, 2018, 144: 145-161. doi: 10.1016/j.watres.2018.07.017 [9] ABBAS M N. Phosphorus removal from wastewater using rice husk and subsequent utilization of the waste residue[J]. Desalination and Water Treatment, 2014, 55(4): 970-977. [10] OLADOJA N A, ADELAGUN R O A, AHMAD A L, et al. Phosphorus recovery from aquaculture wastewater using thermally treated gastropod shell[J]. Process Safety and Environmental Protection, 2015, 98: 296-308. doi: 10.1016/j.psep.2015.09.006 [11] 水博阳, 宋小三, 范文江. 光催化技术在水处理中的研究进展及挑战[J]. 化工进展, 2021, 40(S2): 356-363. doi: 10.16085/j.issn.1000-6613.2021-0756 [12] 王家恒, 宫长伟, 付现凯, 等. TiO2光催化剂的掺杂改性及应用研究进展[J]. 化工新型材料, 2016, 44(1): 15-18. [13] MAARISETTY D, BARAL S S. Defect-induced enhanced dissociative adsorption, optoelectronic properties and interfacial contact in Ce doped TiO2: Solar photocatalytic degradation of Rhodamine B[J]. Ceramics International, 2019, 45(17): 22253-22263. doi: 10.1016/j.ceramint.2019.07.251 [14] ALIPANAHPOUR DIL E, GHAEDI M, ASFARAM A, et al. Synthesis and application of Ce-doped TiO2 nanoparticles loaded on activated carbon for ultrasound-assisted adsorption of Basic Red 46 dye[J]. Ultrason Sonochem, 2019, 58: 104702. doi: 10.1016/j.ultsonch.2019.104702 [15] MAKDEE A, UNWISET P, CHAYAKUL CHANAPATTHARAPOL K, et al. Effects of Ce addition on the properties and photocatalytic activity of TiO2, investigated by X-ray absorption spectroscopy[J]. Materials Chemistry and Physics, 2018, 213: 431-443. doi: 10.1016/j.matchemphys.2018.04.016 [16] 赵文霞, 刘帅, 王蕊, 等. 煅烧氛围对N-TiO2可见光催化性能的影响[J]. 环境工程学报, 2019, 13(12): 2907-2914. [17] JIN C-Z, YANG Y, YANG X-A, et al. Visible photocatalysis of Cr(VI) at g/L level in Si/N-TiO2 nanocrystals synthesized by one-step co-hydrolysis method[J]. Chemical Engineering Journal, 2020, 398: 125641. doi: 10.1016/j.cej.2020.125641 [18] SHAARI N, TAN S H, MOHAMED A R. Synthesis and characterization of CNT/Ce-TiO2 nanocomposite for phenol degradation[J]. Journal of Rare Earths, 2012, 30(7): 651-658. doi: 10.1016/S1002-0721(12)60107-0 [19] MENG Z, WAN L, ZHANG L, et al. One-step fabrication of Ce–N-codoped TiO2 nano-particle and its enhanced visible light photocatalytic performance and mechanism[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 4102-4107. doi: 10.1016/j.jiec.2013.12.111 [20] NASIR M, BAGWASI S, JIAO Y, et al. Characterization and activity of the Ce and N co-doped TiO2 prepared through hydrothermal method[J]. Chemical Engineering Journal, 2014, 236: 388-397. doi: 10.1016/j.cej.2013.09.095 [21] SINGARAM B, VARADHARAJAN K, JEYARAM J, et al. Preparation of cerium and sulfur codoped TiO2 nanoparticles based photocatalytic activity with enhanced visible light[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 349: 91-99. doi: 10.1016/j.jphotochem.2017.09.003 [22] SENTHILNATHAN J, PHILIP L. Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2[J]. Chemical Engineering Journal, 2010, 161(1/2): 83-92. [23] CHEN Y, LIU K. Fabrication of Ce/N co-doped TiO2/diatomite granule catalyst and its improved visible-light-driven photoactivity[J]. J Hazard Mater, 2017, 324(Pt B): 139-150. [24] BIAN Z, FENG Y, LI H, et al. Adsorption-photocatalytic degradation and kinetic of sodium isobutyl xanthate using the nitrogen and cerium co-doping TiO2-coated activated carbon[J]. Chemosphere, 2021, 263: 128254. doi: 10.1016/j.chemosphere.2020.128254 [25] ERAIAH R K, MADRAS G. Metal–metal charge transfer and interfacial charge transfer mechanism for the visible light photocatalytic activity of cerium and nitrogen co-doped TiO2[J]. Journal of Sol-Gel Science and Technology, 2014, 71(2): 193-203. doi: 10.1007/s10971-014-3350-4 [26] BURROUGHS P, HAMNETT A, ORCHARD A F, et al. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium[J]. Journal of the Chemical Society, Dalton Transactions, 1976, 1(17): 1686-1698. [27] XUE G, LIU H, CHEN Q, et al. Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites[J]. J Hazard Mater, 2011, 186(1): 765-772. doi: 10.1016/j.jhazmat.2010.11.063 [28] LUO Y, WEI X, GAO B, et al. Synergistic adsorption-photocatalysis processes of graphitic carbon nitrate (g-C3N4) for contaminant removal: Kinetics, models, and mechanisms[J]. Chemical Engineering Journal, 2019, 375: 122019. doi: 10.1016/j.cej.2019.122019 [29] 张伟, 梁哲, 汪爱河, 等. 改性牡蛎壳粉优化制备及其对草甘膦的吸附性能[J]. 工业水处理, 2022, 42(03): 90-97. doi: 10.19965/j.cnki.iwt.2021-0670 [30] LIN L, ZHANG X, XIAO G, et al. Photocatalytic Degradation Glyphosate with Cerium and Nitrogen Co-Doped TiO2 under Visible Irradiation[J]. Advanced Materials Research, 2012, 430-432: 1048-1051. doi: 10.4028/www.scientific.net/AMR.430-432.1048 [31] RAJORIYA S, BARGOLE S, GEORGE S, et al. Synthesis and characterization of samarium and nitrogen doped TiO2 photocatalysts for photo-degradation of 4-acetamidophenol in combination with hydrodynamic and acoustic cavitation[J]. Separation and Purification Technology, 2019, 209: 254-269. doi: 10.1016/j.seppur.2018.07.036 [32] HERRMANN J M. Photocatalysis fundamentals revisited to avoid several misconceptions[J]. Applied Catalysis B:Environmental, 2010, 99(3/4): 461-468. [33] 万燕, 魏任星, 卢挺, 等. 二氧化钛多相光催化降解有机污染物影响因素研究进展[J]. 现代化工, 2018, 38(5): 53-56. doi: 10.16606/j.cnki.issn0253-4320.2018.05.012