-
人工湿地是一种环境友好的、可持续的废水处理技术,具有性能稳定、运行和维护成本低等优点。在人工湿地中,微生物活动是实现总氮(TN)去除的主要途径[1]。传统方法主要是采用硝化和反硝化作用来去除TN。然而,生活污水中TN主要由NH4+-N组成,在人工湿地缺氧区域中,溶解氧缺乏限制了硝化过程,导致NH4+-N去除率低,进而导致TN去除效率差。研究人员探索了多种方法来提高NH4+-N去除效率,例如人工曝气[2]、复合人工湿地[3]、潮汐流人工湿地[4]等。然而,这些方法都使系统比传统人工湿地更加复杂或耗能。实际上,在保持传统人工湿地优点的同时,可以通过改变人工湿地基质来提高其脱氮效率。
为提高人工湿地对NH4+-N的去除率,除了填充沸石等对NH4+-N具有吸附作用的基质外[5],还可以选择对NH4+-N具有氧化作用的基质。近年来出现了2种独特的NH4+-N氧化途径,即在缺氧条件下,Fe(III)和Mn(IV)均可氧化去除NH4+-N。这2种技术分别被称为铁氨氧化(Feammox)和锰氨氧化(Mnammox)。热力学研究[6-7]表明,Feammox和Mnammox技术氧化可以将NH4+-N直接氧化为硝态氮(NOx−-N)或N2。一些学者认为Feammox中NH4+-N的直接产物是NOx−-N[8],生成的NOx−-N可以通过反硝化、厌氧氨氧化(anammox)或与Fe2+耦合的方式被还原为N2[6, 9],从而被去除。然而,还有一些学者认为,Feammox更倾向于直接将NH4+-N氧化为N2,这是一种全新的脱氮路径[10]。关于Mnammox技术,锰氧化物具有更低的零电点(1.5~4.6),在微生物代谢中利用效率更高[11],其脱氮性能往往更为优秀。但与Feammox相同,Mnammox的脱氨途径也不明确,其NH4+-N的直接产物倾向于是NOx−-N还是N2,这仍然存在争论[12-14]。总体而言,锰矿和铁矿都具有强化NH4+-N去除的能力。此外,铁矿和锰矿含有丰富的金属离子,这些金属离子可以与磷形成络合物,从而去除水中的可溶性磷酸盐[15]。因此,将铁矿和锰矿作为人工湿地的基质有很好的应用前景。
本文以砾石基质的人工湿地为对照组,另外构建了基质为铁矿和锰矿的2组人工湿地。通过长期的水质监测,以研究铁矿基和锰矿基人工湿地对污染物去除的促进作用,同时比较了不同基质人工湿地中脱氮和除磷效果的差异。最后,结合湿地基质的物化分析及微生物证据,对Feammox和Mnammox技术的差别进行探讨,以期为人工湿地中铁矿和锰矿的应用提供参考。
铁/锰矿基人工湿地脱氮除磷性能及机理
Performance and mechanism of nitrogen and phosphorus removal in iron/manganese ore-based constructed wetlands for
-
摘要: 铁氧化物和锰氧化物均可在缺氧条件下介导氨氮(NH4+-N)的氧化去除,这2项技术被称为铁氨氧化(Feammox)和锰氨氧化(Mnammox)。此外,金属氧化物对总磷(TP)也有去除能力,因此,在人工湿地中具有良好的应用前景。为比较铁矿基和锰矿基人工湿地的脱氮除磷效果,本研究建立了铁矿基人工湿地(CW-Fe)、锰矿基人工湿地(CW-Mn)和砾石对照组人工湿地(CW-C)3组人工湿地。结果表明,CW-Fe和CW-Mn的脱氮除磷性能均优于CW-C。尽管锰矿对NH4+-N的吸附作用最强,但CW-Fe却表现出了更优越的NH4+-N长期去除性能。在基质对NH4+-N的吸附饱和后,CW-Fe对NH4+-N的去除率仍有39.93%~62.4%,而CW-Mn只有29.15%~35.4%。由于铁矿和锰矿溶出的金属离子能与磷酸盐结合形成稳定的沉淀,从而有效去除TP,CW-Fe和CW-Mn均有优异的TP去除性能。CW-Mn的TP去除率最高,为95.26%,其次是CW-Fe,为79.97%。在微生物方面,具有还原铁氧化物和氧化NH4+-N潜力的Bacillus和Exiguobacterium在CW-Fe中均得到了显著富集。结合水质数据及脱氮相关功能菌的分析,推测出Feammox中可能更倾向于将NH4+-N直接氧化为N2,而Mnammox则是更倾向于先将NH4+-N氧化为NOx−-N。本研究可为探索同步脱氮除磷的低能耗污水处理工艺及人工湿地中基质的选择提供案例参考。Abstract: Both Fe(III) and Mn(IV) oxides can oxidize and remove ammonia nitrogen (NH4+-N) under anoxic conditions, and these two technologies are known as Feammox and Mnammox. Additionally, metal oxides also have the ability to remove total phosphorus (TP), making them a promising option for use in constructed wetlands (CWs). In order to compare the nitrogen and phosphorus removal efficiency of iron ore-based and manganese ore-based CWs, three groups of CWs were established for this study: iron ore (CW-Fe), manganese ore (CW-Mn), and a control group with gravel (CW-C). The experimental results showed that both CW-Fe and CW-Mn had better nitrogen and phosphorus removal performance than CW-C. Although manganese ore had the strongest adsorption effect on NH4+-N, CW-Fe exhibited a superior performance on long-term removal for NH4+-N. Even after saturated adsorption to NH4+-N by the substrates, the removal efficiency of NH4+-N by CW-Fe remained at 39.93% to 62.4%, while that of CW-Mn only remained 29.15% to 35.4%. Because metal ions dissolved from iron ore and manganese ore can combine with phosphates to form stable precipitates, effectively removing TP, both CW-Fe and CW-Mn showed the excellent TP removal performance. The TP removal efficiency of CW-Mn was the highest, at 95.26%, followed by CW-Fe at 79.97%. In terms of microorganisms, Bacillus and Exiguobacterium, which have the potential to reduce iron oxides and oxidize NH4+-N, were significantly enriched in CW-Fe. Based on the water quality data and analysis of nitrogen-related functional bacteria, it was speculated that Feammox may be more likely to directly oxidize NH4+-N to N2, while Mnammox is more likely to first oxidize NH4+-N to NOx−-N. This study provides a reference for exploring low-energy wastewater treatment processes that achieve simultaneous nitrogen and phosphorus removal, as well as selecting substrates used in constructed wetlands.
-
Key words:
- constructed wetlands /
- Feammox /
- Mnammox /
- nutrient removal
-
表 1 基质材料的EDS结果
Table 1. EDS results of substrates
% 基质材料 O Fe Si Mn Al 原锰矿 60.3 5.6 17.6 14.0 2.5 实验后的锰矿 57.4 5.8 20.7 13.3 2.9 原铁矿 29.1 58.4 5.6 5.8 1.1 实验后的铁矿 29.2 55.2 8.0 4.8 2.8 -
[1] TANG S Y, LIAO Y H, XU Y C, et al. Microbial coupling mechanisms of nitrogen removal in constructed wetlands: A review[J]. Bioresource Technology, 2020, 314: 123759. doi: 10.1016/j.biortech.2020.123759 [2] WU Q, XIAO J J, FU L J, et al. Microporous intermittent aeration vertical flow constructed wetlands for eutrophic water improvement[J]. Environmental Science and Pollution Research, 2020, 27(14): 16574-16583. doi: 10.1007/s11356-020-08067-x [3] UNG H T T, LEU B T, TRAN H T H, et al. Combining flowform cascade with constructed wetland to enhance domestic wastewater treatment[J]. Environmental Technology & Innovation, 2022, 27: 102537. [4] ZHANG M P, HUANG J C, SUN S S, et al. Nitrogen removal through collaborativemicrobial pathways in tidal flow constructed wetlands[J]. Science of the Total Environment, 2021, 758: 143594. doi: 10.1016/j.scitotenv.2020.143594 [5] SHI J H, YANG Z X, DAI H L, et al. Preparation and application of modified zeolites as adsorbents in wastewater treatment[J]. Water Science and Technology, 2018, 77: 621-635. [6] DESIREDDY S, CHACKO S P. A review on metal oxide (FeOx/MnOx) mediated nitrogen removal processes and its application in wastewater treatment[J]. Reviews in Environmental Science and Bio-Technology, 2021, 20(3): 697-728. doi: 10.1007/s11157-021-09581-1 [7] WANG Y, BAI Y H, SU J F, et al. Advances in microbially mediated manganese redox cycling coupled with nitrogen removal in wastewater treatment: A critical review and bibliometric analysis[J]. Chemical Engineering Journal, 2023, 461: 141878. doi: 10.1016/j.cej.2023.141878 [8] HUANG S, JAFFE P R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions[J]. Biogeosciences, 2015, 12(3): 769-779. doi: 10.5194/bg-12-769-2015 [9] XU B K, SHI L S, ZHONG H, et al. Investigation of Fe(II) and Mn(II) involved anoxic denitrification in agricultural soils with high manganese and iron contents[J]. Journal of Soils and Sediments, 2021, 21(1): 452-468. doi: 10.1007/s11368-020-02776-z [10] DING L J, AN X L, LI S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48(18): 10641-10647. [11] CHEN S, DING B J, QIN Y B, et al. Nitrogen loss through anaerobic ammonium oxidation mediated by Mn(IV)-oxide reduction from agricultural drainage ditches into Jiuli River, Taihu Lake Basin[J]. Science of the Total Environment, 2020, 700: 134512. doi: 10.1016/j.scitotenv.2019.134512 [12] CHENG C, HE Q, ZHANG J, et al. New insight into ammonium oxidation processes and mechanisms mediated by manganese oxide in constructed wetlands[J]. Water Research, 2022, 215: 118251. doi: 10.1016/j.watres.2022.118251 [13] FERNANDES S O, JAVANAUD C, AIGLE A, et al. Anaerobic nitrification–denitrification mediated by Mn-oxides in meso-tidal sediments: Implications for N2 and N2O production[J]. Journal of Marine Systems, 2015, 144: 1-8. doi: 10.1016/j.jmarsys.2014.11.011 [14] LUTHER G W, SUNDBY B, LEWIS B L, et al. Interactions of manganese with the nitrogen cycle: Alternative pathways to dinitrogen[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4043-4052. doi: 10.1016/S0016-7037(97)00239-1 [15] SHEN S T, LI X, CHENG F K, et al. Review: Recent developments of substrates for nitrogen and phosphorus removal in CWs treating municipal wastewater[J]. Environmental Science and Pollution Research, 2020, 27(24): 29837-29855. doi: 10.1007/s11356-020-08808-y [16] FANG D X, ZHAO G, XU X Y, et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions[J]. Bioresource Technology, 2018, 249: 684-693. doi: 10.1016/j.biortech.2017.10.063 [17] WANG R G, ZHAO X, WANG T C, et al. Can we use mine waste as substrate in constructed wetlands to intensify nutrient removal? A critical assessment of key removal mechanisms and long-term environmental risks[J]. Water Research, 2022, 210: 118009. doi: 10.1016/j.watres.2021.118009 [18] 曾银金, 许伟斌. 同步脱氮除磷基质应用于人工湿地的研究进展[J]. 湿地科学, 2022, 20(6): 852-858. doi: 10.13248/j.cnki.wetlandsci.2022.06.016 [19] PAP S, KIRK C, BREMNER B, et al. Low-cost chitosan-calcite adsorbent development for potential phosphate removal and recovery from wastewater effluent[J]. Water Research, 2020, 173: 115573. doi: 10.1016/j.watres.2020.115828 [20] WANG Y F, SONG X S, CAO X, et al. Integration of manganese ores with activated carbon granules into CW-MFC to trigger anoxic electron transfer and removal of ammonia nitrogen[J]. Journal of Cleaner Production, 2022, 334: 130202. doi: 10.1016/j.jclepro.2021.130202 [21] OMRAN M, FABRITIUS T, ELMAHDY A M, et al. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore[J]. Applied Surface Science, 2015, 345: 127-140. doi: 10.1016/j.apsusc.2015.03.209 [22] DGHOUGHI L, ELIDRISSI B, BERNEDE C, et al. Physico-chemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis[J]. Applied Surface Science, 2006, 253(4): 1823-1829. doi: 10.1016/j.apsusc.2006.03.021 [23] INGO G M, MAZZONI S, BULTRINI G, et al. Small-area xps and xaes study of the iron-ore smelting process[J]. Surface and Interface Analysis, 1994, 22(1-12): 614-619. doi: 10.1002/sia.7402201131 [24] CHENG Y, ZHANG Y Z, XIONG W Y, et al. Simultaneous removal of tetracycline and manganese (II) ions from groundwater using manganese oxide filters: Efficiency and mechanisms[J]. Journal of Water Process Engineering, 2021, 42: 102158. doi: 10.1016/j.jwpe.2021.102158 [25] JIANG J S, WANG Y, YU D, et al. Garbage enzymes effectively regulated the succession of enzymatic activities and the bacterial community during sewage sludge composting[J]. Bioresource Technology, 2021, 327: 124792. doi: 10.1016/j.biortech.2021.124792 [26] KOUKI S, SAIDI N, M'HIRI F, et al. Isolation and characterization of facultative mixotrophic ammonia-oxidizing bacteria from constructed wetlands[J]. Journal of Environmental Sciences, 2011, 23(10): 1699-1708. doi: 10.1016/S1001-0742(10)60596-7 [27] LOVLEY D. Dissimilatory Fe (III)-and Mn (IV)-reducing prokaryotes[J]. Prokaryotes, 2006, 2: 635-658. [28] ANEKSAMPANT A, NAKASHIMA K, KAWASAKI S. Microbial leaching of iron from hematite: Direct or indirect elution[J]. Materials Transactions, 2020, 61(2): 396-401. doi: 10.2320/matertrans.M-M2019860 [29] ZHANG J L, LIU Q W, LI K, et al. Peanut root exudates suppress fusarium solani and modulate the microbial community structure of rhizosphere in grape replant soil[J]. Horticulturae, 2022, 8(10): 892. doi: 10.3390/horticulturae8100892 [30] XIE H J, YANG Y X, LIU J H, et al. Enhanced triclosan and nutrient removal performance in vertical up-flow constructed wetlands with manganese oxides[J]. Water Research, 2018, 143: 457-466. doi: 10.1016/j.watres.2018.05.061 [31] HUANG X, YAO K, YU J H, et al. Nitrogen removal performance and microbial characteristics during simultaneous chemical phosphorus removal process using Fe3+[J]. Bioresource Technology, 2022, 363: 127972. doi: 10.1016/j.biortech.2022.127972 [32] JAVANAUD C, MICHOTEY V, GUASCO S, et al. Anaerobic ammonium oxidation mediated by Mn-oxides: From sediment to strain level[J]. Research in Microbiology, 2011, 162(9): 848-857. doi: 10.1016/j.resmic.2011.01.011 [33] ZHOU G W, YANG X R, LI H, et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III) reduction[J]. Environmental Science & Technology, 2016, 50(17): 9298-9307. [34] YANG Y F, PENG H, NIU J F, et al. Promoting nitrogen removal during Fe(III) reduction coupled to anaerobic ammonium oxidation (Feammox) by adding anthraquinone-2, 6-disulfonate (AQDS)[J]. Environmental Pollution, 2019, 247: 973-979. doi: 10.1016/j.envpol.2019.02.008