-
抗生素是一种具有抗菌活性的药物[1],可以用于预防和治疗微生物引起的多种疾病[2]。近年来,滥用抗生素带来的生态环境问题已经成为全球性热点关注问题。水环境中残留抗生素的污染分布范围广,具有毒性大、浓度低、难降解、易生物富集等特性[3]。目前降解抗生素的常用方法有物理吸附[4]、化学氧化[5]和生物降解[6]等。其中光催化氧化技术由于有效性、低成本、高稳定性和环境友好性被广泛用于降解抗生素废水[7]。
三氧化钨(WO3)是n型纳米结构半导体,其禁带宽度约为2.6~2.8 eV,制备成本低、绿色环保、具有优异化学稳定性和良好的光催化性能[8-11],因此,被认为是一种有潜力代替TiO2的光催化材料。但由于光生电子和空穴复合率高,其在光催化领域的应用受到了限制,有研究指出构建Z型异质结结构有助于提高WO3的光催化活性[12-15]。
近年来,高分子石墨氮化碳(g-C3N4)被报道为一种新型的无金属光催化剂,其具有2.7 eV的可见光响应窄带隙[16]。g-C3N4制备简单、具有优异的吸附性能和稳定的化学性质,常被用作载体材料。苏跃涵等[17]制备出二维超薄g-C3N4,提高了光催化过程对于恩诺沙星的降解。YU等[18]使用微波加热法制备出金字塔状g-C3N4阵列,其具有较大的比表面积,光生载流子分离效率高,表现出优异的光催化活性,对罗丹明B的脱色率高达99.5%。有研究表明,g-C3N4/WO3异质结材料具有良好的光催化性能[19-20],采用球磨法合成的g-C3N4/WO3具有较高的比表面积,导致光生载流子在可见光下分离和迁移增强,且对罗丹明B的光催化活性明显增强。然而目前将g-C3N4与WO3进行复合并用于降解四环素类抗生素的研究较少,对于g-C3N4/WO3光催化降解抗生素机理的研究较欠缺。
本研究通过原位水热法制备出g-C3N4/WO3复合光催化材料。分析了不同g-C3N4含量的g-C3N4/WO3复合材料的形貌结构和光电性能,并评价了其对土霉素溶液的光催化降解性能和稳定性。最后通过自由基淬灭实验探寻g-C3N4/WO3光催化降解机理。本研究制备的具有高效光生载流子分离、优异氧化还原能力和高吸附能力的Z型异质结光催化剂,对抗生素的去除具有一定的应用价值,可为光催化氧化技术处理抗生素废水提供参考。
Z型g-C3N4/WO3复合材料光催化降解土霉素
Photocatalytic degradation of oxytetracycline by Z-scheme g-C3N4/WO3 composite
-
摘要: 采用原位水热法,将WO3纳米棒负载在层状的g-C3N4上制备具有高吸附性和光催化活性的Z型g-C3N4/WO3复合光催化剂。通过XRD、XPS和SEM对复合材料的形貌和结构进行了表征,并测试其光致发光光谱、光电流和紫外可见漫反射光谱;考察了在可见光下g-C3N4/WO3复合材料对土霉素的降解效果及复合材料的可重复利用性能,并结合自由基淬灭实验初步推测了g-C3N4/WO3的光催化机理。结果表明,WO3纳米棒负载到g-C3N4纳米片上并形成异质结;g-C3N4/WO3异质结增强了可见光响应且降低了光生载流子复合率;添加0.6 g g-C3N4的g-C3N4/WO3复合光催化剂具有最佳的光催化活性,在可见光照射下120 min对土霉素的降解率达到86%,优于单组分的g-C3N4和WO3,且稳定性较好;在g-C3N4/WO3降解土霉素过程中,空穴(h+)为主要活性物质。
-
关键词:
- g-C3N4/WO3 /
- 可见光 /
- 光催化降解 /
- Z型异质结 /
- 土霉素
Abstract: The Z-scheme g-C3N4/WO3 composite photocatalyst with high adsorption and photocatalytic activities was prepared by in-situ hydrothermal method by loading WO3 nanorods onto layered g-C3N4. The structure and morphology were characterized by XRD, XPS and SEM. Photoluminescence spectroscopy, photocurrents and UV-Vis diffuse reflection spectroscopy were also tested. The degradation effect of oxytetracycline (OTC) by g-C3N4/WO3 composites under visible light and their reusability were investigated, and the photocatalytic mechanism of g-C3N4/WO3 was preliminarily speculated with free radical quenching experiments. The results showed that heterojunctions were formed after WO3 nanorods loading on g-C3N4 nanosheets. The g-C3N4/WO3 heterojunction enhanced the visible light response and reduced the photogenerated carrier complexation rate. The g-C3N4/WO3 composite photocatalyst with 0.6 g g-C3N4 had the best photocatalytic activity, and the degradation rate of OTC reached 86% after 120 min visible light irradiation, which was superior to that of the single-component g-C3N4 or WO3, and the stability was better. In OTC degradation by g-C3N4/WO3, the holes (h+) were the main active substances.-
Key words:
- g-C3N4/WO3 /
- visible light /
- photocatalytic degradation /
- Z-scheme heterojunction /
- OTC
-
-
[1] 刘宏, 庞族族, 石林, 等. 光催化降解喹诺酮类抗生素的研究进展[EB/OL]. [2022-12-20].工业水处理, 1-4. https://kns.cnki.net/kcms/detail/12.1087.TQ.20220927.1504.001.html. [2] 杜玉海, 王晓云, 范增博, 等. rGO/MoS2-CN的制备及可见光催化降解磺胺类抗生素的性能研究[J]. 环境化学, 2022, 41(9): 3012-3021. [3] 廖洋, 鲁金凤, 曹轶群, 等. 光催化降解对抗生素藻类毒性效应影响研究进展[J]. 环境化学, 2021, 40(1): 111-120. [4] 阳春, 王瀚, 王琦, 等. 氨基改性磁性介孔硅对磺胺类抗生素的吸附研究[J]. 中国给水排水, 2022, 38(23): 123-128. [5] 刘路明, 高志敏, 邓兆雄, 等. 过硫酸盐的活化及其在氧化降解水中抗生素的机理和应用[J]. 环境化学, 2022, 41(5): 1702-1717. [6] 段彤, 曾小芸, 谈树成. MBR处理猪场废水过程中抗生素抗性基因的去除[J]. 环境工程, 2022, 40(4): 8-13. [7] 张帆, 刘晓娜, 李博, 等. 模拟日光下铌酸盐/钛酸纳米片催化降解水中环丙沙星[J]. 环境工程学报, 2022, 16(10): 3232-3242. [8] 杨天翔, 王银号, 张永伟, 等. 氧化钨纳米棒团簇的制备及电催化性能[J]. 无机化学学报, 2023, 39(2): 221-233. [9] 吴亮. CuWO4/WO3的制备及其对含油污泥的光催化氧化处理[J]. 化工环保, 2023, 43(1): 107-112. [10] 李厚芬, 薛帅, 曹雅洁, 等. 类单晶纳米片状WO3的制备及其光催化性能[J]. 中国环境科学, 2021, 41(4): 1615-1623. [11] 陈宝宁, 丁春华, 方岩雄, 等. Ag2O/WO3-SiO2气凝胶的制备及光催化性能研究[J]. 工业水处理, 2022, 43(2): 136-141. [12] LIU X, JIN A, JIA Y, et al. Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4[J]. Applied Surface Science, 2017, 405: 359-371. doi: 10.1016/j.apsusc.2017.02.025 [13] LING Y, DAI Y. Direct Z-scheme hierarchical WO3/BiOBr with enhanced photocatalytic degradation performance under visible light[J]. Applied Surface Science, 2020, 509: 145201. [14] LI P, GUO J, JI X, et al. Construction of direct Z-scheme photocatalyst by the interfacial interaction of WO(3) and SiC to enhance the redox activity of electrons and holes[J]. Chemosphere, 2021, 282: 130866. [15] ASLAM I, CAO C, TANVEER M, et al. A novel Z-scheme WO3/CdWO4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of organic pollutants[J]. RSC Advances, 2015, 5(8): 6019-6026. doi: 10.1039/C4RA15847D [16] GHOSH U, PAL A. Graphitic carbon nitride based Z scheme photocatalysts: Design considerations, synthesis, characterization and applications[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 383-408. doi: 10.1016/j.jiec.2019.07.014 [17] 苏跃涵, 王盈霏, 张钱新, 等. 二维超薄g-C3N4的制备及其光催化性能研究[J]. 中国环境科学, 2017, 37(10): 3748-3757. [18] YU Y, WANG C, LUO L, et al. An environment-friendly route to synthesize pyramid-like g-C3N4 arrays for efficient degradation of rhodamine B under visible-light irradiation[J]. Chemical Engineering Journal, 2018, 334: 1869-1877. doi: 10.1016/j.cej.2017.11.133 [19] ZHAO Q, LIU S, CHEN S, et al. Facile ball-milling synthesis of WO3/g-C3N4 heterojunction for photocatalytic degradation of Rhodamine B[J]. Chemical Physics Letters, 2022, 805:139908. [20] DU J, WANG Z, LI Y, et al. Establishing WO3/g-C3N4 composite for “memory” photocatalytic activity and enhancement in photocatalytic degradation[J]. Catalysis Letters, 2019, 149(5): 1167-1173. doi: 10.1007/s10562-019-02711-z [21] ZHENG F, ZHANG M, GUO M. Controllable preparation of WO3 nanorod arrays by hydrothermal method[J]. Thin Solid Films, 2013, 534: 45-53. doi: 10.1016/j.tsf.2013.01.102 [22] HAN X, XU D, AN L, et al. WO3/g-C3N4 two-dimensional composites for visible-light driven photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(10): 4845-4855. doi: 10.1016/j.ijhydene.2018.01.117 [23] GRIGIONI I, CORTI A, DOZZI M V, et al. Photoactivity and stability of WO3/BiVO4 photoanodes: Effects of the contact electrolyte and of Ni/Fe oxyhydroxide protection[J]. The Journal of Physical Chemistry C, 2018, 122(25): 13969-13978. doi: 10.1021/acs.jpcc.8b01112 [24] SUN M, ZHOU Y, YU T, et al. Synthesis of g-C3N4/WO3-carbon microsphere composites for photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(18): 10261-10276. doi: 10.1016/j.ijhydene.2022.01.103 [25] 杨利伟, 刘丽君, 夏训峰, 等. pg-C3N4/BiOBr/Ag复合材料的制备及其光催化降解磺胺甲(口恶)唑[J]. 环境科学, 2021, 42(6): 2896-2907.