-
河流、湖泊等受到农业和水土流失等面源污染日趋严重,已受到研究者关注。由于分布式水文模型SWAT的精确度高且移植性好,已在面源污染分析及水文循环等研究中广泛应用[1-2]。SWAT模型空间数据库的精确度将直接影响模型模拟结果的精确度[3],为避免数据精确度导致的不确定性,将空间数据与实际情况更进一步吻合是提高模型精确度的关键。已有学者对优化DEM数据和土壤类型图的精度做过研究,SHEN等[4]通过优化初始GIS数据,重采样到新的网格,并以所有可能方式对可用的GIS图进行分组,探究分辨率的阈值,基于此技术对大宁河流域SWAT模型进行了有效优化。李润奎等[5]探究不同土壤数据对SWAT模型模拟的影响,发现输入高分辨数字土壤数据 (SoLIM) 和美国传统土壤数据 (SSURGO) 这两种不同类型的土壤数据,对SWAT模型模拟的产水结果在空间上具有显著的差异。马永明等[6]通过AW3D30 DSM、SRTM1 DEM和ASTER GDEM2数字高程模型作为基本的地形数据,评价不同DEM数据对SWAT模型精确度的影响。但对于土地利用数据,学者通常使用主要的土地利用/覆被类型 (耕地、林地、草地等) 作为输入数据[7-9],通过设置不同土地利用情景等方式对模型模拟及验证,而农作物种植结构空间分布的差异对水土流失及面源污染负荷量具有较大的影响[10],进一步将会影响模型模拟的精确度。故通过高分辨率基于种植结构的土地利用数据作为空间数据,将会较大程度的提高SWAT模型的模拟效果,并且对研究区域面源污染分析及综合治理提供更加有效的指导。
乌梁素海流域位于干旱-半干旱季风气候区,长期以来由于以农药和化肥的施用来增加粮食产量,加之流域畜禽养殖规模的不断扩大,使得流域农业面源污染问题日益严重,直接影响乌梁素海湖泊水质及流域农业的可持续发展[11-13]。本研究拟通过遥感高精度影像、无人机航拍照片和大量地面实测数据,对2022年乌梁素海流域主要农作物 (小麦、玉米、葵花、瓜果类等) 的种植结构分布进行精准解析,进而通过SWAT模型构建以日为时间尺度的连续模拟,对流域径流、非点源污染负荷和营养物质的迁移转化进行定量模拟和时空分布分析,为乌梁素海流域面源污染治理提供参考,为进一步将其应用于水环境容量的计算,以及流域综合管理提供基础数据。
基于种植结构改进的SWAT模型模拟乌梁素海流域面源污染负荷
Simulation of non-point source pollution load in Ulansuhai watershed by SWAT model based on improved planting structure
-
摘要: 乌梁素海是黄河流域最大的湖泊湿地,其地处河套灌区,是灌区排水的承泄湖。多年来面临着严重的水生态系统功能退化、水环境污染等问题,而改善和治理湖泊水环境的基础是要厘清乌梁素海流域灌区退水导致的农业面源污染负荷问题。基于无人机获取的高分辨照片与遥感影像和地面实测数据相结合所获取的精准种植结构数据可作为SWAT模型输入的土地利用数据,以确保对农业面源污染迁移转化过程的模拟更接近真实情况。结果表明,基于作物种植结构数据对流域径流模拟精确度较高,率定期R2为0.74,NES为0.81,验证期R2为0.78,NES为0.67。TN和TP在2010—2020年间整体呈逐渐下降的趋势。季节分析发现,TN和TP均表现为春季负荷量较高。空间分布表明,乌梁素海流域总氮年均负荷量在南部的河套灌区较高,北部草原区较低,在流域东部番茄、瓜果、甜菜等经济作物集中分布的区域,TN负荷量为30~45 t·a−1;总磷污染物负荷量的空间分布与总氮基本一致,主要分布在以玉米和葵花为主的子流域,TP年均总输出量均超过10 t·a−1。本研究结果可为乌梁素海流域面源污染治理及种植结构调整提供参考。Abstract: Ulansuhai, as the largest ecological functional area in north China, has been faced with serious problems of water ecosystem function degradation and water environment pollution for many years. The basis of improving and controlling the lake water environment was to clarify and solve the non-point source pollution caused by irrational irrigation and farming in Ulansuhai Watershed. Based on the SWAT model, this paper combined the high-resolution photos obtained by Unmanned Aerial Vehicle with remote sensing images and ground measured data as the land use data input by the SWAT model to ensure that the simulation of the migration and transformation process of non-point source pollution was closer to the real situation. The results showed that the simulation accuracy of runoff was high based on crop planting structure data, and the preheating period R2 was 0.74, NES was 0.81, and the verification period R2 was 0.78, NES was 0.67. TN and TP showed a gradual decline from 2010 to 2020. The seasonal analysis showed that both TN and TP showed a higher load in spring. The spatial distribution showed that the average annual load of total nitrogen in the Ulansuhai Watershed was higher in the southern Hetao irrigation area, but lower in the northern grassland. In the eastern part of the basin, where tomato, melon, fruit, beet and other crops were concentrated, TN load was 30-45 (t·a-1), and the spatial distribution of total phosphorus pollutant load was basically consistent with that of total nitrogen.It was mainly distributed in the sub-basins of corn and sunflower, and the annual total output of TP exceeds 10 (t·a-1). The results of this study can provide theoretical basis for non-point source pollution acontroll and planting structure improvement in Ulansuhai watershed.
-
Key words:
- Ulansuhai Watershed /
- SWAT model /
- planting structure /
- non-point source pollution
-
表 1 乌梁素海流域土地利用数据索引表
Table 1. Index table of land use data in Ulansuhai Basin
土地利用类型 代码 占比 林地 FRST 0.44% 草地 PAST 45.89% 水体 WATR 1.08% 不透水地面 URBN 2.32% 裸地 BARR 14.93% 玉米 CORN 18.71% 小麦 DWHT 0.81% 葵花 SUNF 9.28% 其他作物 AGRL 6.54% 表 2 气象站基本情况列表
Table 2. List of basic weather stations
编号 名称 气象站点 东经 / (°) 北纬 / (°) 1 五原 53337 108.467 41.083 2 临河 53513 107.367 40.733 3 磴口 53419 107.000 40.333 4 乌拉特前旗 53433 108.650 40.733 5 乌拉特中旗 53336 108.310 41.340 6 乌拉特后旗 53324 107.050 41.067 7 杭锦后旗 53420 107.117 40.850 表 3 SWAT模型可用参数
Table 3. SWAT model available parameters
序号 参数名称 参数描述 变化范围 1 CN2.mgt SCS径流曲线系数 28~99 2 ALPHA_BF.gw 基流 α 系数 0~1 3 GWQMN.gw 浅层地下水径流系数 0~5 000 4 SOL_K(1).sol 饱和水力传导系数 -100~100 5 ESCO.hru 土壤蒸发补偿系数 0~2 6 GW_REVAP.gw 地下水再蒸发系数 0~1 7 REVAPMN.gw 浅层地下水再蒸发系数 0~10 8 GW_DELAY.gw 地下水滞后系数 0~90 9 CH_N2.rte 主河道曼宁系数值 -10~100 10 SURLAG.bsn 地表径流滞后时间 0~10 -
[1] ADDAB H, BAILEY R T. Simulating the effect of subsurface tile drainage on watershed salinity using SWAT[J]. Agricultural Water Management, 2022, 262(31): 107431. [2] 刘卫林, 李香, 吴滨, 等. 修河中上游流域土地利用变化对径流的影响[J]. 水土保持究, 2023, 30(3): 111-120. [3] 陈祥义, 肖文发, 黄志霖, 等. 空间数据对分布式水文模型SWAT流域水文模拟精度的影响[J]. 中国水土保持科学, 2016, 14(1): 138-143. [4] SHEN Z Y, CHEN L, LIAO Q, et al. A comprehensive study of the effect of GIS data on hydrology and non-point source pollution modeling[J]. Agricultural Water Management, 2013, 118: 93-102. doi: 10.1016/j.agwat.2012.12.005 [5] 李润奎, 朱阿兴, 秦承志, 等. 土壤数据对分布式流域水文模型模拟效果的影响[J]. 水科学进展, 2011, 22(2): 168-174. [6] 马永明, 张利华, 张康, 朱志儒, 吴宗凡. 基于SWAT模型和多源DEM数据的流域水系提取精度分析[J]. 地球信息科学学报, 2019, 21(10): 1527-1537. [7] ABBASPOUR K C, JING Y, MAXIMOV I, et al. Modelling of hydrology and water quality in the pre-alpine/alpine thur watershed using SWAT[J]. Journal of Hydrology, 2007, 333(2/3/4): 413-430. [8] WU D, CUI Y L, WANG Y T, et al. Reuse of return flows and its scale effect in irrigation systems based on modified SWAT model[J]. Agricultural Water Management, 2019, 213: 280-288. doi: 10.1016/j.agwat.2018.10.025 [9] 刘卫林, 李香, 吴滨, 等. 修河中上游流域土地利用变化对径流的影响[J]. 水土保持研究, 2023, 30(3): 111-120. [10] 王维刚, 史海滨, 李仙岳, 等. 遥感订正作物种植结构数据对提高灌区SWAT模型精度的影响[J]. 农业工程学报, 2020, 36(17): 158-166. [11] LIU X H, LIU H M, CHEN H, et al. Spatiotemporal distribution and prediction of chlorophyll-a in Ulansuhai lake from an arid area of China[J]. Frontiers in Environmental Science, 2023, 11: 1045464. doi: 10.3389/fenvs.2023.1045464 [12] 杨文焕, 尹强, 钟清涛, 等. 2013—2019年乌梁素海排干入湖污染负荷与湖区水质的响应关系[J]. 华北水利水电大学学报(自然科学版), 2021, 42(1): 7-15. [13] 于瑞宏, 刘廷玺, 许有鹏, 等. 人类活动对乌梁素海湿地环境演变的影响分析[J]. 湖泊科学, 2007(4): 465-472. [14] 田野, 冯启源, 唐明方, 等. 基于生态系统评价的山水林田湖草生态保护与修复体系构建研究——以乌梁素海流域为例[J]. 生态学报, 2019, 39(23): 8826-8836. [15] 郭萍, 赵敏, 张妍, 等. 基于水足迹的河套灌区多目标种植结构优化调整与评价[J]. 农业机械学报, 2021, 52(12): 346-357. [16] KUMAR S N, THOMAS B W, XINZHONG D, et al. Modeling nitrous oxide emissions from rough fescue grassland soils subjected to long-term grazing of different intensities using the Soil and Water Assessment Tool (SWAT)[J]. Environmental Science & Pollution Research, 2018, 25(27): 27362-27377. [17] 魏怀斌, 张占庞, 杨金鹏. SWAT模型土壤数据库建立方法[J]. 水利水电技术, 2007(6): 15-18. doi: 10.13928/j.cnki.wrahe.2007.06.026 [18] ESLAMIAN S, SINGH V P, OSTAD-ALI-ASKARI K, et al. Sensitivity Analysis of Runoff Model by SWAT to Meteorological Parameters: A Case Study of Kasillian Watershed, Mazandaran, Iran[J]. International Journal of Agricultural Sciences, 2017, 3(3): 2454-6224. [19] ZADEH F K, NOSSENT J, SARRAZIN F, et al. Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model[J]. Environmental Modelling and Software, 2017, 91(5): 210-222. [20] MORIASI D N, MARGARET W G, NARESH P, et al. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria[J]. Transactions of the Asabe, 2015, 58(6): 1763-1785. doi: 10.13031/trans.58.10715 [21] RATHJENS H, BIEGER K, CHAUBEY I, et al. Delineating floodplain and upland areas for hydrologic models: a comparison of methods[J]. Hydrological Processes, 2016, 30(23): 4367-4383. [22] QI J Y, ZHANG X S, MCCARTY G W, et al. Assessing the performance of a physically-based soil moisture module integrated within the Soil and Water Assessmen Tool[J]. Environmental modelling & software, 2018, 209: 329-341. [23] 崔战江, 马锐霞. 浅谈总排干沟水资源在巴彦淖尔市水资源管理中的合理配置[J]. 内蒙古水利, 2014(4): 43-44. [24] 田伟东, 贾克力, 史小红, 等. 2005-2014 年乌梁素海湖泊水质变化特征[J]. 湖泊科学, 2016, 28(6): 1226-1234. [25] 郭嘉, 韦玮, 于一雷, 等. 乌梁素海湿地富营养化研究进展[J]. 生态学杂志, 2015, 34(11): 3244-3252. [26] 杜丹丹, 李畅游, 史小红, 等. 乌梁素海水体营养状态季节性变化特征研究[J]. 干旱区资源与环境, 2019, 33(12): 186-192. [27] MAO X, WANG C, WEI X, et al. The Distribution of Chlorophyll-a and its' Correlation with Related Indicators in the Ulansuhai Lake, China[J]. Journal of Environmental Accounting & Management, 2014, 2(2): 123-131. [28] M. F COVENEY, D. L STITES, E. F LOWE, et al. Nutrient removal from eutrophic lake water by wetland filtration[J]. Ecological Engineering, 2002, 19(2): 141-159. doi: 10.1016/S0925-8574(02)00037-X [29] 王晓娅. 粮食作物种植结构与化肥面源污染——基于长江经济带市级数据的实证研究[D]. 武汉: 华中农业大学, 2022. [30] 刘根红, 许强, 乔娜, 等. 宁夏自流灌区农作物氮磷低污染种植结构优化[J]. 干旱地区农业研究, 2016, 34(1): 140-146. doi: 10.7606/j.issn.1000-7601.2016.01.22 [31] 薛垠鑫, 刘根红, 王晓钰. 滴灌条件下氮磷钾肥配施对玉米株高、光合速率及产量的影响[J]. 甘肃农业大学学报, 2020, 55(6): 77-85. [32] 丁夏平, 王瑞. 内蒙古河套灌区灌排体系现状及污染变化规律[J]. 水利科学与寒区工程, 2022, 5(5): 51-54. [33] 王希欢. 乌梁素海流域氮污染来源的时空特征解析研究[D]. 北京: 中国环境科学研究院, 2021.