-
随着全球气候变化和人口增长的影响,水资源问题已经成为一个全球性的挑战。饮用水厂生产废水回用是将生产过程中的沉淀池排泥水和滤池反冲洗水排再次利用,用于生产过程。回用可以提高水资源的利用效率,减少废水排放对环保的影响,实现生产和环保的双赢。目前国内外对生产废水回用的研究逐渐增多。在国外,例如美国[1]、英国[2]、日本[3]等地,生产废水回用技术已经成熟并广泛应用[4]。而在国内,目前对生产废水回用的研究主要集中于对滤池反冲洗水的回用,而且多为未经处理或仅静置沉淀后直接进行回用,对沉淀池排泥水的回用研究较少。
相较于直接回用,生产废水回用技术包括混凝沉淀[5]、气浮[6]、膜滤[7]等,这些方法能够有效地去除废水中的悬浮物、微生物等污染物,从而提高回用水的质量,使其能够更加安全地再次用于生产过程[8]。滤池反冲洗水主要是由滤料中截留下来的固体颗粒物、有机污染物和一些化学药剂的残留物组成。沉淀池排泥水主要由较多的胶体颗粒、泥沙、悬浮物、混凝剂和混凝剂形成的氢氧化物构成[9]。但不同水厂的排泥水具有不同的特性,受水源及水厂的工艺影响较大[10]。对于水厂而言,2种不同水质能否直接回用以及直接回用和处理后回用对水厂的影响仍值得深入探究。
本研究基于南方某水厂实际水样,首先通过污染负荷分析对比2种生产废水直接回用对水厂工艺负荷带来的不同影响;其次,开展小试实验探究了不同混凝剂及其剂量对反冲洗水和排泥水中不同污染物的去除效果和机理;最后,通过混凝-超滤中试装置对2种生产废水进行了处理,研究了中试处理过程中的不同现象,分析了生产废水处理后回用对水厂带来的效益。本研究结果以期为其他水厂提供了宝贵的经验参考和技术指导,推动生产废水回用在饮用水厂中的应用。
混凝-超滤工艺处理饮用水厂滤池反冲洗水和排泥水的效能
Efficacy of coagulation-ultrafiltration treatment for filter backwash water and sedimentation sludge water from drinking water treatment plants
-
摘要: 为探究饮用水厂滤池反冲洗水和排泥水的直接回用和处理后回用对水厂的影响及两类水处理过程中的差异,采用了污染负荷计算、实验室混凝小试和现场混凝-超滤中试装置对两类生产废水分别进行了研究。溶解性有机碳(dissolved organic carbon,DOC)、氨氮 (NH4+-N)、Al3+和全氟类化合物(perfluorinated compounds,PFASs)的污染负荷计算结果表明生产废水直接回用会为水厂带来一定的额外负荷,其中排泥水和反冲洗水分别对PFASs和Al3+负荷贡献较大;通过对小试中浊度,UV254以及5种荧光组分去除效果的对比,反冲洗水的混凝效果稍好于排泥水,同时10 mg·L−1的聚合氯化铝为最佳混凝剂方案;在中试过程中,两类水中的浊度、有机物、Al3+和PFASs均可被有效去除,出水差异较小,但反冲洗水中的亲水性和小分子有机物使得其去除效果低于排泥水。总体来说,经过处理之后,两类生产废水均可回用,回用可有效减少废水排放量,提高水厂水资源利用率。Abstract: To investigate the impacts of direct reuse and treated reuse of filter backwash water and sedimentation sludge water on water treatment plants, as well as the different performance in the treatment processes of these two types of water, this study employed pollution load calculations, laboratory-scale coagulation experiments, and pilot-scale coagulation-ultrafiltration trials to examine the two types of production wastewater. The pollution load calculations for dissolved organic carbon (DOC), ammonia nitrogen (NH4+-N), Al3+, and perfluorinated compounds (PFASs) indicated that the direct reuse of production wastewater would impose an additional pollution load on the drinking water treatment plants, of which sedimentation sludge water and filter backwash water contributed significantly to the load of PFASs and Al3+, respectively. Comparative analysis of turbidity, UV254, and PFASs removal in the laboratory-scale tests revealed that the coagulation performance of filter backwash water was slightly better than that of sludge discharge water. A dosage of 10 mg·L−1 of poly-aluminum chloride was found to be the optimal coagulant. In the pilot-scale experiments, turbidity, DOC, Al3+, and PFASs in both types of water were effectively removed, with small differences in effluent quality. However, the presence of hydrophilic and small-molecule organic matter in filter backwash water resulted in lower removal efficiency compared to sedimentation sludge water. Overall, after appropriate treatment, both the two wastewater types can be reused, thereby reducing wastewater discharge and improving water resource utilization in drinking water treatment plants.
-
表 1 水厂原水、反冲洗水和排泥水水质参数
Table 1. Water quality parameters of raw water, filter backwash water and sedimentation sludge water
样品 pH 浊度/NTU UV254/cm−1 DOC/(mg·L−1) NH4+-N/(mg·L−1) Al3+/(mg·L−1) ∑PFAS/(mg·L−1) 原水 7.5~8.3 0~50 0.021~0.053 1.92~5.11 0.14~0.27 0.003~0.056 0.2 反冲洗水 7.5~8.2 100~200 0.026~0.057 2.16~3.24 0.13~0.27 0.117~0.182 2.8 排泥水 7.7~8.1 >>200 0.024~0.049 2.40~3.58 0.10~0.64 0.066~0.130 11.4 -
[1] LI W, LIANG X, DUAN J, et al. Influence of spent filter backwash water recycling on pesticide removal in a conventional drinking water treatment process[J]. Environmental science water research & technology. 2018, 4 (7) : 157-167. [2] SCHOFIELD T. Dissolved air flotation in drinking water production[J]. Water Science and Technology. 2001, 43 (8) : 9-18. [3] OKUDA T, NISHIJIMA W, SUGIMOTO M, et al. Removal of coagulant aluminum from water treatment residuals by acid[J]. Water Research. 2014, 60: 75-81. [4] 张立. 澄西水厂生产废水处理及回用优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [5] 武仁超, 王东升, 段晋明, 等. 强化混凝工艺深度处理给水厂排泥废水[J]. 环境工程学报, 2012, 6 (6) : 1915-1918. [6] 李荣光, 何文杰, 黄廷林, 等. 气浮工艺在水厂排泥水处理中的应用[J]. 供水技术, 2013, 7 (3) : 6-9. [7] 陈丽, 李佳宾, 付宛宜, 等. 陶瓷膜组合工艺对自来水厂排泥水的处理效果[J]. 环境工程, 2021, 39 (7) : 80-87. [8] 孙天晓, 唐海华, 周叶, 等. 饮用水厂中深度处理工艺生产废水研究[J]. 水处理技术, 2022, 48 (10) : 1-5. [9] 黄卓. 城市净水厂生产废水回用安全性研究[D]. 西安: 西安建筑科技大学, 2011. [10] HU C, LIU H, QU J, et al. Coagulation behavior of aluminum salts in eutrophic water: Significance of Al13 species and pH control[J]. Environmental Science & Technology. 2006, 40 (1) : 325-331. [11] WU S, YUAN T, FU W, et al. Perfluorinated compound correlation between human serum and drinking water: Is drinking water a significant contributor?[J]. Science of the Total Environment. 2023, 873: 162471. [12] QIAN Y, HU Y, CHEN Y, et al. Haloacetonitriles and haloacetamides precursors in filter backwash and sedimentation sludge water during drinking water treatment[J]. Water Research. 2020, 186: 116346. [13] LORET J F, COSSALTER L, ROBERT S, et al. Assessment and management of health risks related to the recycling of filter backwash water in drinking water production[J]. Water Practice and Technology. 2013, 8 (2) : 166-179. [14] MCCORMICK N J, PORTER M, WALSH M E. Disinfection by-products in filter backwash water: Implications to water quality in recycle designs[J]. Water Research. 2010, 44 (15) : 4581-4589. [15] MATILAINEN A, VEPSÄLÄINEN M, SILLANPÄÄ M. Natural organic matter removal by coagulation during drinking water treatment: A review[J]. Advances in Colloid and Interface Science. 2010, 159 (2) : 189-197. [16] AZIZ M T, GRANGER C O, FERRY J L, et al. Algae impacted drinking water: Does switching to chloramination produce safer drinking water?[J]. Science of the Total Environment. 2023, 877: 162815. [17] LONG D T, PEARSON A L, VOICE T C, et al. Influence of rainy season and land use on drinking water quality in a karst landscape, State of Yucatán, Mexico[J]. Applied Geochemistry. 2018, 98: 265-277. [18] ZHANG Z, JING R, HE S, et al. Coagulation of low temperature and low turbidity water: Adjusting basicity of polyaluminum chloride (PAC) and using chitosan as coagulant aid[J]. Separation and Purification Technology. 2018, 206: 131-139. [19] 陈伯俭. 南水北调 (邯郸段) 水源水预氧化-强化混凝试验研究[D]. 邯郸: 河北工程大学, 2020. [20] 熊易华. 长江上游高浊度原水及处理技术[J]. 给水排水, 2011, 47 (4) : 23-27. [21] 董秉直, 李伟英, 陈艳, 等. 用有机物分子量分布变化评价不同处理方法去除有机物的效果[J]. 水处理技术, 2003 (3) : 155-158. [22] QIAN Y, SHI Y, GUO J, et al. Molecular characterization of disinfection byproduct precursors in filter backwash water from 10 drinking water treatment plants[J]. Science of the Total Environment. 2023, 856: 159027. [23] XU Y, CHEN T, LIU Z, et al. The impact of recycling alum-humic-floc (AHF) on the removal of natural organic materials (NOM) : Behavior of coagulation and adsorption[J]. Chemical Engineering Journal. 2016, 284: 1049-1057. [24] WANG W, YUE Q, LI R, et al. Optimization of coagulation pre-treatment for alleviating ultrafiltration membrane fouling: The role of floc properties on Al species[J]. Chemosphere. 2018, 200: 86-92.