-
城镇污水处理厂(以下简称“污水厂”)在运营过程中消耗大量能源、物料,并在生化处理过程中释放温室气体(主要为CO2、N2O、CH4),其碳排放量可占全社会总碳排放量的1%~2%,是我国城市碳排放的重要来源[1-2]。并且,随污水处理行业快速发展和出水排放标准日益严格,污水厂碳排放呈逐渐上升趋势[3-5]。在我国实现“碳达峰,碳中和”的目标背景下,对污水厂进行碳排放特征研究是实现污水处理行业低碳转型、助力“双碳”战略的重要基础。
目前,针对国内污水厂的碳排放研究有所增多,主要包括以下几个方面:考察单个污水厂碳排放量及排放类别组成;研究单个污水厂处理流程碳足迹;对采用不同处理工艺的污水厂碳排放特征进行对比[6-22]。总体而言,相关研究多以少量样本为考察对象,样本地域分布较分散、数量较不足。由于气候、水文、进水水质、处理规模、处理工艺以及管理水平等上的差别,不同地区污水厂碳排放特征存在差异,个例的污水厂碳排放数据并不足以为特定地区污水厂碳排放路径制定提供可靠参考。另外,现有研究多以污水厂月/年均运营数据为基础进行碳排放核算,忽略了污水处理每日进出水工况变化,核算精确度不足[6-7]。在此局面下,有必要在获得大量样本详细运营数据前提下,对区域性的污水厂进行全面的碳排放研究,科学评判碳排放特征及主要影响因素,为本区域城镇污水处理行业低碳运营之路提供针对性依据。
南方某省人口数量大、经济发达、污水处理规模巨大,但尚无针对其城镇污水处理行业全面的碳排放特征调查研究。本研究以该省59座污水厂2021年度的每日运营数据为基础,对其碳排放量和强度进行了核算。基于核算结果,考察不同类别(运营状况、处理工艺等)污水厂总体碳排放特征和影响因素,以期科学助力该省污水处理行业低碳发展和国家“双碳”政策实施。
南方某省城镇污水处理厂碳排放特征
Characteristics of carbon emission from municipal wastewater treatment plants in a south-China province
-
摘要: 城镇污水处理厂是城市碳排放的重要来源。在双碳政策下,探明城镇污水处理厂碳排放特征是污水厂实现低碳运营的基础。本研究参考现有污水处理厂碳排放核算标准,对南方某省59座城镇污水处理厂2021年度碳排放进行了核算,并结合能耗分析了不同类型污水厂碳排放强度与处理规模、运行负荷率、处理工艺、耗氧污染物削减量、干化污泥含水率的关系。结果表明,所考察城镇污水处理厂2021年度碳排放量为0.02×104~11.98×104 t,其中电耗碳排放是主要碳排放来源,占比为62.6%~98.9%,总体占比79.7%。污水厂的碳排放强度为0.168~1.070 kg·m−3,均值为0.326 kg·m−3,且多数低于国内其他地区强度值。碳排放强度与吨水电耗呈正相关,结合SPSS多元线性回归分析,结果显示运行负荷率、耗氧污染物削减量、处理工艺均显著影响污水厂碳排放水平,而处理规模、干化污泥含水率对污水厂碳排放水平无显著影响。以上研究结果可为该省城镇污水处理厂实现低碳运营提供参考,同时也可为其他省市城镇污水处理厂碳排放特征研究提供参考。Abstract: Municipal wastewater treatment plants (WWTPs) are notable sources of carbon emission for cities in China. With the policy implementation of carbon peak and carbon neutrality, it is fundamental to investigate carbon emission from WWTPs for their low-carbon operation. Based on the available standards, the carbon emissions from 59 WWTPs in a south-China province in 2021 were calculated. And the influences of treatment capacity, loading rate, treatment process, reduction in oxygen-demanding pollutants and moisture content of dried sludge on carbon emission intensity in different types of WWTPs were analyzed combined with power consumption. Results show that the carbon emission from the studied WWTPs in 2021 ranged from 0.02×104 to 11.98×104 t, of which the emission resulting from electricity consumption (79.7% with the range of 62.6%~98.9%) was the key part. Moreover, the carbon emission intensities of the WWTPs were in the range of 0.168~1.070 kg·m−3 (with an average value of 0.326 kg·m−3), most of which were lower than the corresponding values in other parts of China. Furthermore, SPSS multiple linear regression analysis indicated that carbon emission intensity was found to correlate positively with specific electricity consumption, and loading rate, reduction in oxygen-demanding pollutants and treatment process all significantly affected carbon emission intensities of WWTPs, while treatment capacity and moisture content of dried sludge had insignificant effects on carbon emission intensities. The research result was expected to contribute to the low-carbon operation of WWTPs in the cities of the target province and also provides useful references to the study of WWTPs carbon emission in other parts of China.
-
表 1 污水厂规模分布
Table 1. Scale distribution of WWTPs
设计规模/(104 t·d−1) 数量/座 数量占比/% 总设计规模/(104 t·d−1) 总设计规模占比/% 总处理规模/(104 t·d−1) 总处理规模占比/% 0~1 10 16.9 6.2 0.8 3.6 0.5 1~5 19 32.2 59.4 7.6 39.1 5.7 5~10 12 20.3 96.7 12.3 77.3 11.4 10~20 8 13.6 124.9 15.9 95.4 14.0 20~50 7 11.9 253.9 32.3 215.7 31.7 > 50 3 5.1 250.0 31.8 250.9 36.9 表 2 污水厂处理工艺分布
Table 2. Process distribution of WWTPs
处理工艺 数量/座 数量占比/% 总设计规模/(104 t·d−1) 总设计规模占比/% 总处理规模/(104 t·d−1) 总处理规模占比/% A2/O类 27 45.8 455.8 58.0 423.4 62.2 SBR类 13 22.0 97.7 12.4 94.2 13.8 MBR 10 16.9 142.5 18.1 81.5 12.0 氧化沟类 6 10.2 43.0 5.5 33.5 4.9 其他 3 5.1 47.2 6.0 47.8 7.0 表 3 不同处理工艺污水厂CH4和N2O排放因子
Table 3. Emission factors of CH4 and N2O for WWTPs with different treatment processes
处理工艺 CH4排放因子/(kg·kg−1) N2O排放因子/(kg·kg−1) A2/O类 0.014 2 0.004 66 SBR类 0.010 0 0.020 20 氧化沟类 0.009 6 0.006 41 表 4 不同药剂碳排放因子
Table 4. Carbon emission factors of different chemicals
类别 药剂名称 药剂碳排放因子/(kg·kg−1) 碳源 乙酸钠 0.623 糖浆 1.6 甲醇 0.985 混凝剂/絮凝剂及助凝剂 聚丙烯酰胺 1.48 聚合氯化铝 0.53 聚合氯化铝铁 2.5 硫酸铝 0.16 生石灰 1.74 消毒剂 次氯酸钠 0.99 液氯 0.93 膜清洗剂 柠檬酸 1.6 氢氧化钠 (50%) 1.12 表 5 国内外城镇污水处理厂碳排放强度
Table 5. Global carbon emission intensities of WWTPs
污水厂
所在地统计年份 处理工艺 处理规模/(104 t·d−1) 碳排放强度/(kg·m−3) 参考文献 浙江省 2019 CAST 4.00 0.790 [22] CAST+MBBR 1.040 西安市 2017 倒置A2/O 50.00 0.498 [15] 深圳市 2012 A2/O 35.00 0.360 [12] 重庆市 2009 多数为氧化沟或SBR 251.24 1.439(多厂均值,生活污水) [16] 0.526(多厂均值,工业废水) 北京市 2014 A/O 50.00 0.404 [14] SBR 8.00 0.864 四川省 2016 CASS 0.20 0.650 [19] 中国北方 2006 A2/O 60.00 0.470 [13] 波兰 2017 A2/O 2.30 0.600 [35] SBR 0.70 0.700 JHB 0.65 0.700 A2/O 0.87 0.600 A2/O 0.85 0.800 芬兰 2017 AO-AO 2.20 0.700 [35] AO 1.35 0.600 AO 2.60 0.600 AO+生物滤床 4.80 0.700 发达国家 1995~2012 A2/O, SBR, BAF, MBR等 0.02~2 0.390(多厂均值) [36] 发展中国家 1995~2012 A2/O, SBR, BAF, MBR等 0.02~2 0.530(多厂均值) [36] 西班牙 2011 A2/O 0.93 0.224 [37] 预缺氧+A2/O 7.42 0.242 表 6 4座不同处理工艺污水厂碳排放数据
Table 6. Carbon emission data of 4 WWTPs with different treatment processes
污水
处理厂设计规模/
(104 t·d−1)处理规模/
(104 t·d−1)处理工艺 进水水质/(mg·L−1) 出水水质/(mg·L−1) 吨水电耗/
(kWh·t−1)电耗碳
排放占比/%碳排放
强度/
(kg·m−3)COD BOD5 TN COD BOD5 TN WWTP1 1.0 0.5 CASS 94.9 41.9 16.5 8.4 1.3 7.3 0.520 86.1 0.485 WWTP2 1.1 0.6 改良氧化沟 131.0 58.9 19.0 6.9 1.1 7.5 0.622 86.0 0.582 WWTP3 1.0 0.5 A2/O 110.5 40.8 16.7 12.1 1.6 8.3 0.673 88.9 0.609 WWTP4 5.0 3.7 A2/O 243.9 122.3 31.6 9.8 1.1 8.3 0.347 82.4 0.519 WWTP5 5.0 3.5 A2/O+MBR 209.0 106.7 27.7 8.4 2.8 9.0 0.824 84.6 0.953 注:水质为年加权平均值。 表 7 污水厂碳排放多元线性回归分析相关数据
Table 7. Related data of multiple linear regression analysis for carbon emissions of WWTPs
污水厂碳排放影响因素 回归分析系数 标准化系数Beta 显著性 VIF 处理规模 −0.059 0.635 1.605 运行负荷率 −0.825 < 0.001 1.866 A2/O类 0.303 0.030 1.159 氧化沟类 0.322 0.028 1.294 MBR类 0.221 0.058 1.420 耗氧污染物削减量 0.495 0.002 1.530 干化污泥含水率 −0.047 0.753 1.141 -
[1] HUANG Y J,MENG F L,LIU S M,et al. China's enhanced urban wastewater treatment increases greenhouse gas emissions and regional inequality[J]. Water Research, 2023, 230: 119536. doi: 10.1016/j.watres.2022.119536 [2] 陆家缘. 中国污水处理行业碳足迹与减排潜力分析[D]. 合肥: 中国科学技术大学, 2019. [3] 中华人民共和国国务院. 水污染防治行动计划[EB/OL]. [2023-06-28].https: //www.gov.cn/zhengce/content/2015-04/16/content_9613.htm. [4] SU H S,YI H,GU W Y,et al. Cost of raising discharge standards:A plant-by-plant assessment from wastewater sector in China[J]. Journal of Environmental Management, 2022, 308: 114642. doi: 10.1016/j.jenvman.2022.114642 [5] 郭恰. 高标准出水对污水厂实现双碳目标的影响及减排对策分析[J]. 净水技术, 2022, 41(s2): 111-114+126. [6] XIE T, WANG C W. Impact of different factors on greenhouse gas generation by wastewater treatment plants in China[C]//IEEE. 2011 International Symposium on Water Resource and Environmental Protection. 2011: 1448-1451. [7] 闫旭,韩云平,李琦路,等. 污水处理过程中温室气体产生研究进展[J]. 环境化学, 2015, 34(5): 853-862. doi: 10.7524/j.issn.0254-6108.2015.05.2014092401 [8] XI J R,GONG H,ZHANG Y J,et al. The evaluation of GHG emissions from Shanghai municipal wastewater treatment plants based on IPCC and operational data integrated methods (ODIM) [J]. Science of the Total Environment, 2021, 797: 148967. doi: 10.1016/j.scitotenv.2021.148967 [9] LIAO X W,TIAN Y J,GAN Y W,et al. Quantifying urban wastewater treatment sector's greenhouse gas emissions using a hybrid life cycle analysis method- An application on Shenzhen city in China[J]. Science of the Total Environment, 2020, 745: 141176. doi: 10.1016/j.scitotenv.2020.141176 [10] ZHOU X X,YANG F,YANG F,et al. Analyzing greenhouse gas emissions from municipal wastewater treatment plants using pollutants parameter normalizing method:a case study of Beijing[J]. Journal of Cleaner Production, 2022, 376: 134093. doi: 10.1016/j.jclepro.2022.134093 [11] 王雪松,宋蕾,白润英. 呼和浩特地区污水厂能耗评价与碳排放分析[J]. 环境科学与技术, 2013, 36(2): 196-199. doi: 10.3969/j.issn.1003-6504.2013.02.040 [12] 宋宝木,秦华鹏,马共强. 污水处理厂运行阶段碳排放动态变化分析:以深圳某污水处理厂为例[J]. 环境科学与技术, 2015, 38(10): 204-209. [13] 谢淘,汪诚文. 污水处理厂温室气体排放评估[J]. 清华大学学报 (自然科学版) , 2012, 52(4): 473-477. [14] 鲍志远. 典型城市污水处理工艺温室气体排放特征及减排策略研究[D]. 北京: 北京林业大学, 2019. [15] 张程. 污水处理系统碳排放规律研究与量化评价[D]. 西安: 西安理工大学, 2017. [16] 张成. 重庆市城镇污水处理系统碳排放研究[D]. 重庆: 重庆大学, 2011. [17] UCT工艺污水处理厂二氧化碳排放特性[D]. 镇江: 江苏大学, 2019. [18] 王金鹤. 城镇污水处理厂中温室气体的释放研究[D]. 济南: 山东大学, 2011. [19] 夏天虹,张清东,董桂君. 小城镇污水处理厂生命周期的碳排放评估[J]. 四川环境, 2018, 37(3): 135-140. doi: 10.3969/j.issn.1001-3644.2018.03.023 [20] 周政,李怀波,王燕,等. 低碳氮比进水AAO污水处理厂低碳运行[J]. 中国环境科学, 2022, 42(11): 5088-5099. doi: 10.3969/j.issn.1000-6923.2022.11.015 [21] BAO Z Y,SUN S C,SUN D Z. Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing,China[J]. International Biodeterioration & Biodegradation, 2016, 108: 108-114. [22] 张玲丽,顾敦罡,陆嘉麒,等. MBBR用于某CAST工艺污水处理厂提标改造的效能及碳排放分析[J]. 环境工程技术学报, 2022, 13(2): 679-686. [23] IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[R]. Japan: Institute for Global Environmental Strategies, 2006. [24] IPCC. 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories[R]. Switzerland: Intergovernmental Panel on Climate Change, 2019. [25] 中国环境保护产业协会. 污水处理厂低碳运行评价技术规范: T/CAEPI 49-2022[S]. 北京: 中国标准出版社, 2022. [26] 中国城镇供水排水协会. 城镇水务系统碳核算与减排路径技术指南[M]. 北京: 中国建筑工业出版社, 2022. [27] 国家统计局能源统计司. 中国能源统计年鉴2022[M]. 北京: 中国统计出版社, 2023. [28] ZHANG J,SHAO Y,WANG H,et al. Current operation state of wastewater treatment plants in urban China[J]. Environmental Research, 2021, 195: 110843. doi: 10.1016/j.envres.2021.110843 [29] 杨敏,李亚明,魏源送,等. 大型再生水厂不同污水处理工艺的能耗比较与节能途径[J]. 环境科学, 2015, 36(6): 2203-2209. doi: 10.13227/j.hjkx.2015.06.038 [30] CRINI G,LICHTFOUSE E. Advantages and disadvantages of techniques used for wastewater treatment[J]. Environmental Chemistry Letters, 2019, 17(1): 145-155. doi: 10.1007/s10311-018-0785-9 [31] TUMENDELGER A,ALSHBOUL Z,LORKE A. Methane and nitrous oxide emission from different treatment units of municipal wastewater treatment plants in Southwest Germany[J]. PLOS ONE, 2019, 14(1): e0209763. doi: 10.1371/journal.pone.0209763 [32] DESLOOVER J,VLAEMINCK S E,CLAUWAERT P,et al. Strategies to mitigate N2O emissions from biological nitrogen removal systems[J]. Current Opinion in Biotechnology, 2012, 23(3): 474-482. doi: 10.1016/j.copbio.2011.12.030 [33] ZHANG W,PENG Y,REN N,et al. Improvement of nutrient removal by optimizing the volume ratio of anoxic to aerobic zone in AAO-BAF system[J]. Chemosphere, 2013, 93(11): 2859-2863. doi: 10.1016/j.chemosphere.2013.08.047 [34] PENG L,NI B J,YE L,et al. The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge[J]. Water Research, 2015, 73: 29-36. doi: 10.1016/j.watres.2015.01.021 [35] MAKTABIFARD M,AWAITEY A,MERTA E,et al. Comprehensive evaluation of the carbon footprint components of wastewater treatment plants located in the Baltic Sea region[J]. Science of the Total Environment, 2022, 806: 150436. doi: 10.1016/j.scitotenv.2021.150436 [36] COROMINAS L,FOLEY J,GUEST J S,et al. Life cycle assessment applied to wastewater treatment:State of the art[J]. Water Research, 2013, 47(15): 5480-5492. doi: 10.1016/j.watres.2013.06.049 [37] XU X. The carbon footprint analysis of wastewater treatment plants and nitrous oxide emissions from full-scale biological nitrogen removal processes in Spain[D]. Cambridge: Massachusetts Institute of Technology, 2013. [38] WANG H,YANG Y,KELLER A A,et al. Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA,Germany,China and South Africa[J]. Applied Energy, 2016, 184: 873-881. doi: 10.1016/j.apenergy.2016.07.061 [39] WANG J,ZHANG J,XIE H,et al. Methane emissions from a full-scale A/A/O wastewater treatment plant[J]. Bioresource Technology, 2011, 102(9): 5479-5485. doi: 10.1016/j.biortech.2010.10.090 [40] 戴晓虎,张辰,章林伟,等. 碳中和背景下污泥处理处置与资源化发展方向思考[J]. 给水排水, 2021, 57(3): 1-5. doi: 10.13789/j.cnki.wwe1964.2021.03.001