-
在污水处理过程中,碳源作为微生物新陈代谢的必需物质和能量来源,对系统内各种污染物(氮、磷)的去除[1-2]和污泥性能(吸附性能、沉降性能)[1-3]有着非常重要的影响。由于雨水[4]、河水、地下水[5]的渗透稀释,我国5 476座城镇污水处理厂中有2 052座(数量占比37.5%)的进水耗氧有机污染物浓度(以COD计)小于150 mg·L−1,与设计进水水质相差甚远[6]。特别地,南方地区多个城镇污水处理厂的BOD5实际进水值比设计进水低,为设计值的1/2~1/3倍[7]。除此以外,对广东省60多座污水处理厂调查发现,40多座污水处理厂存在进水耗氧有机物浓度(以COD计)偏低的现象,其中23座污水厂进水COD值小于100 mg·L−1,10座污水厂进水COD值小于60 mg·L−1[8]。可见,我国南方地区污水处理厂低浓度进水现象较为普遍。低浓度污水往往需外加碳源来保证脱氮,增加了处理成本,同时会使丝状菌生长速率超过菌胶团细菌[9],容易引发污泥膨胀,增加污水处理难度。
在现有的污水处理工艺中,循环式活性污泥法(cyclic activated sludge system,CASS)能很好地处理低浓度污水,出水水质稳定达标[10-11]。CASS工艺是序批式活性污泥法的改良工艺,通常功能区分为污泥选择区和主反应区,体积比为1∶5,污泥选择区进行反硝化脱氮和厌氧释磷,主反应区进行硝化和好氧聚磷。该工艺具有反应器配置灵活、操作简便、污泥丝状膨胀少和占地面积小等优点,已广泛应用于处理城市污水、工业废水和农村生活污水等[12-14]。在处理低浓度污水时,通过梯级非限制曝气等方式,能有效缓解反硝化碳源不足的问题,促进同步硝化反硝化,在出水达标的前提下显著增强脱氮效率[15]。同时CASS工艺前端的污泥选择区能有效抑制污泥丝状膨胀,活性污泥体积指数一般较低(20~40 mg·L−1),污泥沉降性能良好[16]。
尽管CASS工艺对低浓度进水有良好的适应性,但当进水浓度过低时,会对其沿程污染物降解特征和微生物群落响应机制造成显著影响。有研究表明,当进水COD值为98 mg·L−1时,耗氧有机物浓度(以COD计)在进水曝气0.5 h大幅降低,随后微生物以内源呼吸为主,细胞衰亡释放代谢产物造成水体有机物浓度缓慢升高,有机物、氨氮、总氮和总磷的去除主要发生在运行前期,曝气结束后污染物浓度基本不变,曝气阶段主反应区变形菌门的相对丰度最高[11],污染物浓度变化的主要原因是由于活性污泥与污水接触初期具有快速吸附的性能,吸附作用通常在5~15 min内完成[17]。污染物去除与微生物群落结构变化密切相关,这些沿程变化的特征必然会引起微生物群落结构的沿程差异;同时,进料方式的改变会富集不同的脱氮功能菌,当进水COD值为150 mg·L−1时,序批式进料生化池的硝化螺旋菌属和黄杆菌属丰度较高,而连续式进料的硝化菌属和脱氯单胞菌属丰度较高[18]。可见,对于CASS工艺,微生物的群落特征与污水处理性能密切相关[19]。然而,现有研究大多集中在反应器的整体微生物变化[11,18,20],鲜有涉及沿程(分区、分阶段)微生物群落结构变化方面的研究。而揭示低进水浓度下CASS工艺微生物群落结构的沿程变化特征,是了解污染物降解沿程变化过程机理的关键。
因此,本研究选取广东省某CASS工艺城镇污水处理厂作为研究对象,统计历年运行数据,分析工艺处理效果,沿程布点采集完整周期内不同的反应区域与运行阶段的污水和污泥样品,综合研究CASS生化池沿程污染物变化与沿程微生物群落结构变化,从微生物学角度揭示低负荷CASS工艺的污水处理机理与运行机制,为长期处于低负荷进水条件CASS工艺的设计及运行优化提供参考。
低进水浓度CASS工艺沿程污染物去除特征及微生物群落变化
Pollutant removal characteristics and microbial community changes along the CASS process with low concentration influent
-
摘要: 南方部分城镇污水浓度偏低,而循环式活性污泥法(CASS)能较好地处理低浓度污水,处理性能与微生物群落特征密切相关,但鲜有研究涉及其沿程微生物群落结构变化。本研究选取广东省某CASS城镇污水厂作为典型案例,分析其沿程污染物去除特征和微生物变化,从微生物学角度探讨污染物的去除机理。结果表明:低进水浓度CASS生化池沿程耗氧有机物(以COD计)、TN、NO3−-N、TP主要在污泥选择区被吸附降解,进水1 h COD和TP值降至最低,NH4+-N主要在主反应区被氧化降解,生化池可去除污水中56.42%的耗氧有机物(以COD计)、41.71%的TN、77.78%的NH4+-N、99.59%的TP。生化池主要优势菌门有变形菌门、拟杆菌门、绿弯菌门和浮霉菌门,变形菌门是影响微生物多样性变化的关键菌门。属水平上,进水1 h选择区Zoogloea、Aeromonas和Thauera丰度较高,主反应区Nitrospira丰度较高;进水结束选择区Nitrospira丰度较高,主反应区Terrimonas和Lactobacillus丰度较高;沉淀1 h选择区Thauera丰度提高,主反应区Nitrosomonas丰度较高,主要发生氨氧化;闲置结束选择区脱氮菌类型多丰度高,主反应区Sulfuritalea、Haliangium、Zoogloea丰度较高。沿程功能性微生物丰度变化与污染物浓度变化相对应。NO3−-N对微生物群落结构的塑造影响最显著(解释度为38.92%)。氮代谢途径表明沿程主反应区均发生全程硝化反硝化,选择区均发生短程硝化和全程反硝化,除进水1 h外,其余阶段选择区的反硝化功能基因丰度均比主反应区高。Abstract: The concentration of sewage in some cities in southern China is low, while it can be treated by cyclic activated sludge system (CASS), and the treatment performance is closely related to the microbial community characteristics, but few studies had addressed the changes in microbial community structure along the process. In this study, a CASS urban wastewater plant in Guangdong Province was selected as a typical case to analyse the pollutant removal characteristics and microbial changes along the process, and to explore the pollutant removal mechanism from a microbiological perspective. The results showed that oxygen-consuming organic matter (COD), TN, NO3−-N and TP were mainly adsorbed and degraded in the sludge selection zone along the CASS biochemical tank with low influent concentration, and COD and TP values in the influent decreased to minimum at 1 hour, while NH4+-N was mainly oxidized and degraded in the main reaction zone. Biochemical tank could remove 56.42% of oxygen-consuming organic matter (COD), 41.71% of TN, 77.78% of NH4+-N, and 99.59% of TP from the sewage. The main dominant bacterial phyla in the biochemical tank were Amoebacteria, Bacteroidetes, Green Campylobacter and Phyllobacterium, of which Amoebacteria was the key phylum influencing the microbial diversity. At the genus level, high abundance of Zoogloea, Aeromonas and Thauera occurred in the selection zone, and high abundance of Nitrospira occurred in the main reaction zone after 1 hour feeding. At the end of feeding, high abundance of Nitrospira occurred in the selection zone, high abundance of Terrimonas and Lactobacillus occurred in the main reaction zone. After 1 hour of sedimentation, the abundance of Thauera increased in the selection zone and high abundance of Nitrosomonas occurred in the main reaction zone, where ammonia oxidation mainly occurred. At the end of idle, high abundance and types of denitrifying bacteria occurred in selection zone, and high abundance of Sulfuritalea, Haliangium and Zoogloea occured in the main reaction zone. Changes in the abundance of functional microorganisms along the process corresponded to changes in pollutant concentrations. NO3−-N had the most significant effect on shaping the structure of the microbial community (38.92% explained). The nitrogen metabolic pathway showed that nitrification and denitrification occurred along the main reaction zone, short-course nitrification and full denitrification occurred in the selection zone, and the abundance of denitrification functional genes was higher in the selection zone than in the main reaction zone at all stages except for 1 hour feeding.
-
表 1 月均水质指标
Table 1. Water quality index
项目 COD/(mg·L−1) BOD5/(mg·L−1) SS/(mg·L−1) NH4+-N/(mg·L−1) TN/(mg·L−1) TP/(mg·L−1) 进水 67.0~97.0 7.9~30.5 44.0~86.0 7.2~12.6 10.4~16.5 1.0~1.7 出水 11.0~14.0 0.3~2.5 3.0~4.0 0.2~3.2 3.1~7.9 0.1~0.3 去除率 85.2% 94.9% 94.1% 86.7% 64.0% 85.9% 表 2 微生物Alpha多样性指数
Table 2. Alpha diversity index of microorganisms
功能区域 运行阶段 Chao1 OTUs Shannon Simpson 覆盖率 污泥选择区 进水1 h 2 246.7 1 229 7.41 0.040 0.991 进水结束 2 294.5 1 280 7.2 0.056 0.991 沉淀1 h 2 311.4 1 290 7.3 0.047 0.991 闲置结束 2 403.5 1 316 7.49 0.038 0.991 主反应区 进水1 h 2 170.6 1 252 7.04 0.056 0.991 进水结束 2 218.7 1 214 7.26 0.048 0.991 沉淀1 h 2 279.4 1 251 7.58 0.029 0.992 闲置结束 2 273.4 1 287 7.54 0.030 0.992 -
[1] 杨雄, 彭永臻, 宋姬晨, 等. 进水中碳水化合物分子大小对污泥沉降性能的影响[J]. 中国环境科学, 2015, 35(2): 448-456. [2] 孙雅雯, 张建华, 彭永臻, 等. 外加碳源类型对A~2/O-BCO系统脱氮除磷性能的影响[J]. 化工学报, 2018, 69(8): 3626-3634. [3] 李梅, 朱明璇, 王洪波, 等. 污泥对有机物的吸附动力学试验及模型构建[J]. 安全与环境学报, 2019, 19(6): 2150-2158. doi: 10.13637/j.issn.1009-6094.2019.06.038 [4] XU Z, XIONG L, LI H, et al. Pollution characterization and source analysis of the wet weather discharges in storm drainages[J]. Desalination and Water Treatment, 2017, 72(4): 169-181. [5] 刘文强, 郁达伟, 郑利兵, 等. 南昌某城市污水处理厂进水浓度低成因分析研究[J]. 环境科学学报, 2022, 42(9): 141-150. doi: 10.13671/j.hjkxxb.2022.0088 [6] 李兰娟, 钱言, 陈天放, 等. 我国南方地区城镇污水处理厂进水低浓度原因分析及对策建议[C]//中国环境科学学会2021年科学技术年会论文集. 天津, 2021: 228-233. [7] 邵林广. 南方城市污水处理厂实际运行水质远小于设计值的原因及其对策[J]. 给水排水, 1999(2): 15-17. doi: 10.3969/j.issn.1002-8471.1999.02.004 [8] 邱鸿荣, 罗建中, 郑国辉. 城市污水处理厂进水浓度低原因及其对策的研究[J]. 广东化工, 2010, 37(12): 93-94. doi: 10.3969/j.issn.1007-1865.2010.12.045 [9] GUO J H, PENG Y Z, WANG S Y, et al. Filamentous and non-filamentous bulking of activated sludge encountered under nutrients limitation or deficiency conditions[J]. Chemical Engineering Journal, 2014, 255: 471-478. doi: 10.1016/j.cej.2014.04.098 [10] 袁剑辉, 董超, 谢明鸿, 等. CASS工艺在低浓度进水条件下的运行优化[J]. 中国给水排水, 2014, 30(16): 120-124. doi: 10.19853/j.zgjsps.1000-4602.2014.16.031 [11] 李芷昕, 李惠平, 沈康, 等. 广东省某污水处理厂CASS工艺运行优化效果评价[C]//中国环境科学学会2022年科学技术年会论文集. 2022: 29-34. [12] 柴宗学. CASS工艺在城市污水处理厂运行参数的优化及应用的研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [13] SHAOPO W, JINGJIE Y, TIANLAN W, et al. Applying real-time control for achieving nitrogen removal via nitrite in a lab-scale CAST system[J]. Environmental Technology, 2012, 33(10): 1133-1140. doi: 10.1080/09593330.2011.610362 [14] 杨赵军, 王宁. 循环活性污泥工艺处理中原地区农村生活污水研究[C]//河海大学, 南阳市人民政府, 南阳师范学院, 南水北调集团中线公司, 2022(第十届)中国水生态大会论文集, 2022: 838-850. [15] 李柏林, 张智, 陈杰云, 等. 三峡库区污水厂典型工艺的SND脱氮技术研究[J]. 中国给水排水, 2012, 28(11): 1-5. doi: 10.3969/j.issn.1000-4602.2012.11.001 [16] WANG Y Y, ZHANG Z X, YAN M, et al. Impact of operating conditions on nitrogen removal using cyclic activated sludge technology (CAST)[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2010, 45(3): 370-376. [17] 蒋礼源. 微生物絮凝吸附处理城市污水实验研究[D]. 合肥: 合肥工业大学, 2007. [18] LIANG W H, YU C, REN H Q, et al. Minimization of nitrous oxide emission from CASS process treating low carbon source domestic wastewater: Effect of feeding strategy and aeration rate[J]. Bioresource Technology, 2015, 198: 172-80. doi: 10.1016/j.biortech.2015.08.075 [19] WU L W, NING D L, ZHANG B, et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants[J]. Nature Microbiology, 2019, 4(7): 1183-1195. doi: 10.1038/s41564-019-0426-5 [20] GAO F, NAN J, ZHANG X H, et al. A dynamic modelling of nutrient metabolism in a cyclic activated sludge technology (CAST) for treating low carbon source wastewater[J]. Environmental Science and Pollution Research International, 2017, 24(20): 17016-17030. doi: 10.1007/s11356-017-9277-x [21] 国家环境保护总局. 水和废水监测分析方法 第4版 [M]. 北京: 中国环境科学出版社, 2002. [22] 王元元, 刘和, 符波, 等. 活性污泥吸附联合发酵产酸资源化回收污水碳源[J]. 环境工程学报, 2017, 11(12): 6276-6281. doi: 10.12030/j.cjee.201702067 [23] TAO R, STEVEN A W, LIANG Y C, et al. Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers[J]. Science of the Total Environment, 2018, 612: 739-749. doi: 10.1016/j.scitotenv.2017.08.258 [24] 胡雪峰, 高效江, 陈振楼. 上海市郊河流底泥氮磷释放规律的初步研究[J]. 上海环境科学, 2001, 20(2): 5. [25] 邹华, 阮文权, 陈坚. 硝酸盐作为生物除磷电子受体的研究[J]. 环境科学研究, 2002(3): 38-41. doi: 10.3321/j.issn:1001-6929.2002.03.011 [26] CAO X, WANG Y, HE J, et al. Phosphorus mobility among sediments, water and cyanobacteria enhanced by cyanobacteria blooms in eutrophic Lake Dianchi[J]. Environmental Pollution, 2016, 219: 580-587. doi: 10.1016/j.envpol.2016.06.017 [27] ZHANG L, SHEN Z, FANG W K, et al. Composition of bacterial communities in municipal wastewater treatment plant[J]. Science of the Total Environment, 2019, 689: 1181-1191. doi: 10.1016/j.scitotenv.2019.06.432 [28] JI B H, JIANG M, YANG Y, et al. High treatment effectiveness for secondary effluent in Fe-C microelectrolysis constructed wetlands with electron donor supplementation[J]. Journal of Cleaner Production, 2022, 342: 130934. doi: 10.1016/j.jclepro.2022.130934 [29] THOMAS F, HEHEMANN J H, REBUFFET E, et al. Environmental and gut bacteroidetes: The food connection[J]. Frontiers in Microbiology, 2011, 2: 93. [30] CAROLINE K, LEVANTESI C, ARJAN B, et al. Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants[J]. Fems Microbiology Ecology, 2007, 59(3): 671-682. doi: 10.1111/j.1574-6941.2006.00251.x [31] MÉHEUST R, CASTELLE C J, MATHEUS C P B, et al. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog[J]. Isme Journal, 2020, 14(12): 2907-2922. doi: 10.1038/s41396-020-0716-1 [32] 史小丽, 王凤平, 蒋丽娟, 等. 光照时间对外源性磷在模拟水生态系统中迁移的影响[J]. 环境科学, 2003(1): 40-45. doi: 10.3321/j.issn:0250-3301.2003.01.006 [33] LARSEN P, NIELSEN J L, OTZEN D, et al. Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge[J]. Applied and Environmental Microbiology, 2008, 74(5): 1517-1526. doi: 10.1128/AEM.02274-07 [34] MCMAHON K D, JENKINS D, KEASLING J D. Polyphosphate kinase genes from activated sludge carrying out enhanced biological phosphorus removal[C]//Annual Conference & Exposition of Water Environment Federation. 2001. [35] CHEN C M, MING J, BRANDON A Y, et al. Characterization of aerobic granular sludge used for the treatment of petroleum wastewater[J]. Bioresource Technology, 2019, 271: 353-359. doi: 10.1016/j.biortech.2018.09.132 [36] REN T, CHI Y L, WANG Y, et al. Diversified metabolism makes novel Thauera strain highly competitive in low carbon wastewater treatment[J]. Water Research, 2021, 206: 117742. doi: 10.1016/j.watres.2021.117742 [37] MECHICHI T, STACKEBRANDT E, GAD'ON N, et al. Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromaticasp. nov., and Azoarcus buckelii sp. nov.[J]. Archives of Microbiology, 2002, 178(1): 26-35. doi: 10.1007/s00203-002-0422-6 [38] WANG Q K, HE J Z. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5[J]. Water Research, 2020, 185: 116300. doi: 10.1016/j.watres.2020.116300 [39] HE S, DING L L, LI K, et al. Comparative study of activated sludge with different individual nitrogen sources at a low temperature: Effluent dissolved organic nitrogen compositions, metagenomic and microbial community[J]. Bioresource Technology, 2018, 247: 915-923. doi: 10.1016/j.biortech.2017.09.026 [40] WU P, ZHANG X X, WANG C C, et al. Feasibility of applying intermittent aeration and baffles for achieving granular nitritation in a continuous short-cut denitrifying phosphorus removal system[J]. Science of the Total Environment, 2020, 715: 137023. doi: 10.1016/j.scitotenv.2020.137023 [41] CHIELLINI C, MUNZ G, PETRONI G, et al. Characterization and comparison of bacterial communities selected in conventional activated sludge and membrane bioreactor pilot plants: a focus on Nitrospira and Planctomycetes bacterial phyla[J]. Current Microbiology, 2013, 67(1): 77-90. doi: 10.1007/s00284-013-0333-6 [42] JIA L X, SUN H M, ZHOU Q, et al. Pilot-scale two-stage constructed wetlands based on novel solid carbon for rural wastewater treatment in southern China: Enhanced nitrogen removal and mechanism[J]. Journal of Environmental Management, 2021, 292: 112750. doi: 10.1016/j.jenvman.2021.112750 [43] WU G M, LI Z J, HUANG Y, et al. Electrochemically assisted sulfate reduction autotrophic denitrification nitrification integrated (e-SANI®) process for high-strength ammonium industrial wastewater treatment[J]. Chemical Engineering Journal, 2020, 381: 122707. doi: 10.1016/j.cej.2019.122707 [44] CHEN X, ZHANG Q, ZHU Y N, et al. Response of rotating biological contactor started up by heterotrophic nitrification-aerobic denitrification bacteria to various C/N ratios[J]. Chemosphere, 2022, 291: 133048. doi: 10.1016/j.chemosphere.2021.133048 [45] JABARI L, GANNOUN H, CAYOL J, et al. Macellibacteroides fermentans gen. nov., sp. nov., a member of the family Porphyromonadaceae isolated from an upflow anaerobic filter treating abattoir wastewaters[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62: 2522-2527. doi: 10.1099/ijs.0.032508-0 [46] LI Y X, PAN Z Z, LIAO J S, et al. Micro-aeration and low influent C/N are key environmental factors for achieving ANAMMOX in livestock farming wastewater treatment plants[J]. Water Research, 2023, 120141. [47] LI Y Z, CHEN Z, PENG Y Y, et al. Deeper insights into the effects of substrate to inoculum ratio selection on the relationship of kinetic parameters, microbial communities, and key metabolic pathways during the anaerobic digestion of food waste[J]. Water Research, 2022, 217: 118440. doi: 10.1016/j.watres.2022.118440 [48] NORISUKE U, HIROTSUGU F, YOSHITERU A, et al. Isolation of Nitrospira belonging to Sublineage II from a Wastewater Treatment Plant[J]. Microbes and Environments, 2013, 28(3): 346-353. doi: 10.1264/jsme2.ME13042 [49] UEKI A, AKASAKA H, SUZUKI D, et al. Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56: 39-44. doi: 10.1099/ijs.0.63896-0 [50] LAURENCE H, MAURO T, JAKOB Z, et al. Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels (Lake Geneva, Switzerland)[J]. Water Research, 2011, 45(3): 1213-1228. doi: 10.1016/j.watres.2010.11.018 [51] AHMAD H A, AHMAD S, GAO L J, et al. Energy-efficient and carbon neutral anammox-based nitrogen removal by coupling with nitrate reduction pathways: A review[J]. Science of the Total Environment, 2023, 889: 164213. doi: 10.1016/j.scitotenv.2023.164213 [52] 杨庆, 杨玉兵, 杨忠启, 等. 溶解氧对短程硝化稳定性及功能菌群的影响[J]. 中国环境科学, 2018, 38(9): 3328-3334. doi: 10.3969/j.issn.1000-6923.2018.09.016 [53] 马勇, 陈伦强, 彭永臻, 等. 实际生活污水短程/全程硝化反硝化处理中试研究[J]. 环境科学, 2006(12): 2477-2482. doi: 10.3321/j.issn:0250-3301.2006.12.020 [54] KIM T, HITE M, ROGACKI L, et al. Dissolved oxygen concentrations affect the function but not the relative abundance of nitrifying bacterial populations in full-scale municipal wastewater treatment bioreactors during cold weather[J]. Science of the Total Environment, 2021, 781: 146719. doi: 10.1016/j.scitotenv.2021.146719