-
煤矸石是我国在煤炭开采和选洗加工过程中排放量最大的工业固体废弃物之一[1]。煤矸石的含碳量较低且硬度高于煤,因其热值较低、利用困难,大量的煤矸石堆放于地表,会占用土地,造成水土流失、滑坡、泥石流等地质灾害,给周边生态安全造成极大影响。若煤矸石长期遭受雨水侵蚀,在渗滤和淋溶的作用下,会产生诸多有毒有害物质,这些有毒有害物质会对矿区周边的土壤和地下水造成危害,进而带来一系列严重的生态污染问题[2]。
根据国家统计局数据,2021年受国内下游需求增加和国际能源供求关系影响,我国原煤产量增长至4.13×109 t,同比增长5.9%。根据《中国大宗工业固体废物综合利用产业发展报告》(2021—2022年度)测算的数据,2021年煤矸石产生量约为7.43×108 t,增长5.84%,增幅明显[3]。近年来随着我国煤矸石利用技术不断涌现,煤矸石的利用途径逐年增加,煤矸石的综合利用率逐年提高。2021年全国煤矸石利用量5.43×108 t,综合利用率73.1%,同比增长0.9%[4]。图1(a)显示我国2012—2021年煤炭生产及消费数据,随着煤炭生产量和用量的升高,煤矸石的产生量也在逐年增加。图1(b)显示2011—2021年煤矸石产生量及同比上一年的增长率,煤矸石的综合利用率相对平稳,但增长率呈现上涨趋势。图1(c)显示煤矸石综合利用数据及其增长率。
为保护生态环境,进一步促进煤矸石综合利用产业集聚,提高煤矸石综合利用水平,推动煤矸石综合利用产业高质量发展,加强煤矸石综合利用管理,我国针对煤矸石的处置与利用问题出台了《煤矸石综合利用管理办法 (2014年修订版) 》[5]、《关于推进大宗固体废弃物综合利用产业集聚发展的通知》[6]、《关于加快推进大宗固体废弃物综合利用示范建设的通知》[7]等一系列政策与法规来全面推进煤矸石高值化利用[8]。同时随着各地在生态保护、能源利用、资源节约和污染防治等政策的推动以及相关激励机制的支持下,煤矸石的综合利用途径愈来愈多 (图2) ,主要包括:1) 供电供热、脱碳生产蒸汽[9];2) 制备路基材料、制备土壤改良剂、生态土壤等、塌陷区回填、土地复垦[10-20];3) 制备特种水泥、地基材料,烧结墙体砌块、陶瓷、岩板等建筑材料[21-40];4) 制备铝系硅系化工产品,制备分子筛[41-52];5) 回收煤、黄铁矿、高岭土,回收稀土元素等有价部分[3,53-58]。
本文立足于煤矸石资源综合利用的现状与形势,对煤矸石利用中存在的各类问题进行了归纳总结,吸取国内外对煤矸石高值化利用领域的最新研究进展,重点介绍了煤矸石在建筑材料、地质聚合物、化工产品、新型材料、土地复垦等方面的前沿成果,阐述了煤矸石在高新技术领域的应用潜力,最后分析了推进煤矸石资源利用效率的局限性,展望了煤矸石未来的应用发展前景。本文目的是让科研人员及企业聚焦于煤矸石大规模工业高值化应用,进而提高大宗固体废弃物的综合利用水平,助力经济社会的高质量健康发展。
煤矸石资源高值化利用研究进展
Research progress of high-value utilization of coal gangue resources
-
摘要: 当前我国煤矸石存量和排放量大、产量高度集中、高附加值利用占比小,环境影响突出,是大宗固体废弃物综合利用的核心领域,资源化利用前景广阔。现有对煤矸石的处置能力和规模明显不能满足国家对生态环境保护及“双碳”目标下煤炭综合利用的相关要求。通过介绍煤矸石的物理、化学性质,指出了煤矸石在高值化利用中存在的涉及政策、供求、产业化和环境的问题。着重阐述了煤矸石在建筑材料、地质聚合物、化工产品、新型材料、土地复垦等方面的高值化利用现状,并对其未来的应用前景进行了讨论,提出了煤矸石高值化利用的重点研究方向。以期能够实现煤矸石的高质、高值、高效、绿色发展,不断增加煤矸石综合利用产品的附加值,增强煤矸石高值化利用产业核心竞争力。进一步推进煤矸石资源高值化利用效率,对环境质量的改善、经济社会发展的全面绿色转型具有重要意义。Abstract: The coal gangue in China is the core field of bulk solid waste comprehensive utilization due to its massive stock and emission, high concentration of output, small proportion of high-value-added utilization, and outstanding environmental impact. Hence, the prospect of resource utilization of coal gangue is broad. The existing disposal capacity and scale of coal gangue obviously dissatisfy the national ecological environmental protection and "Double Carbon" target under the comprehensive utilization of coal related requirements. By introducing the physical and chemical properties of coal gangue, this study pointed out the problems involving policy, supply and demand, and industrialization and environment in the high value utilization of coal gangue. This paper highlighted the current situation of high-value utilization of coal gangue in construction materials, geopolymers, chemical products, new materials, and land reclamation, and further discussed the future application prospects of coal gangue, proposed the key research direction of high-value utilization of coal gangue. The above review aimed at achieving the high quality, high value, high efficiency and green development of coal gangue, continuously increasing the value added of coal gangue comprehensive utilization products, and enhancing the core competitiveness of coal gangue high value utilization industry. Further promoting the high-value utilization efficiency of coal gangue resources is essential for the improvement of environmental quality, the overall green transformation of economic and social development.
-
图 3 高岭石晶体结构示意图[61]
Figure 3. Schematic diagram of the crystal structure of kaolinite
图 4 ACGP的水化过程示意图[28]
Figure 4. Schematic of the hydration process of ACGP
图 5 地质聚合物形成机理[37]
Figure 5. Formation mechanism of geopolymerization
图 7 NaA沸石的形成过程[48]
Figure 7. The formation process of NaA zeolite
图 8 SCABs 的制备过程示意图[50]
Figure 8. Schematic of the SCABs preparation process
图 9 CM/CTAB合成过程示意图[80]
Figure 9. Schematic diagram of the synthetic process for CM/CTAB
表 1 我国煤矸石化学组成范围[60]
Table 1. Chemical composition range of coal gangue in China
% SiO2 Al2O3 Fe2O3 CaO MgO TiO2 P2O3 K2O+Na2O V2O3 51~65 16~36 2.28
~14.630.42
~2.320.44
~2.410.9~4.0- 0.078
~0.2401.45
~3.900.008
~0.010 -
[1] 贾敏. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2019, 39(4): 46-52. [2] LI J, WANG J. Comprehensive utilization and environmental risks of coal gangue: A review[J]. Journal of Cleaner Production, 2019, 239: 117946. doi: 10.1016/j.jclepro.2019.117946 [3] 常纪文, 杜根杰, 杜建磊, 等. 我国煤矸石综合利用的现状、问题与建议[J]. 中国环保产业, 2022(8): 13-17. doi: 10.3969/j.issn.1006-5377.2022.08.024 [4] 王栋民, 左彦峰, 李俏, 等. 煤矸石的矿物学特征及建材资源化利用[J]. 砖瓦, 2006(6): 17-23. doi: 10.16001/j.cnki.1001-6945.2006.06.005 [5] 中华人民共和国国务院办公厅. 煤矸石综合利用管理办法 (2014年修订版) [EB/OL] [2023-09-10].https: //www.gov.cn/zhengce/2014-12/22/content_5713236.htm. [6] 中华人民共和国国家发展改革委办公厅 工业和信息化部办公厅. 关于推进大宗固体废弃物综合利用产业集聚发展的通知[EB/OL ]. [2023-09-10].https: //www.ndrc.gov.cn/fzggw/jgsj/hzs/sjdt/201901/t20190116_1130638.html. [7] 中华人民共和国国家发展改革委办公厅. 关于加快推进大宗固体废弃物综合利用示范建设的通知[EB/OL ]. [2023-09-10].https: //www.ndrc.gov.cn/xxgk/zcfb/tz/202201/t20220104_1311402_ext.html. [8] 王玉涛. 煤矸石固废无害化处置与资源化综合利用现状与展望[J]. 煤田地质与勘探, 2022, 50(10): 54-66. doi: 10.12363/issn.1001-1986.21.11.0614 [9] HONG P, LI Y, JIA X L. Experimental study on thermoelectric generation device based on accumulated temperature waste heat of coal gangue[J]. Energy Reports, 2022, 8(7): 210-219. [10] HU Z Q, LIU S G, GONG Y L. Evaluation of soil quality and maize growth in different profiles of reclaimed land with coal gangue filling[J]. Land, 2021, 10(12): 1307. doi: 10.3390/land10121307 [11] HAN X N, DONG Y, GENG Y Q, et al. Influence of coal gangue mulching with various thicknesses and particle sizes on soil water characteristics[J]. Scientific Reports, 2021, 11(1): 15368. doi: 10.1038/s41598-021-94806-0 [12] 秦琪焜, 方健梅, 王根柱, 等. 煤矸石与城市污泥混合制备植生基质的试验研究[J]. 煤炭科学技术, 2022, 50(7): 304-314. doi: 10.13199/j.cnki.cst.2021-0619 [13] WANG Y M, HUANG Y C, HAO Y X. Experimental study and application of rheological properties of coal gangue-fly ash backfill slurry[J]. Processes, 2020, 8(3): 284. doi: 10.3390/pr8030284 [14] 邱继生, 程坤, 张如意, 等. 煤矸石粉对矸石基绿色胶结充填体性能的影响[J]. 矿业研究与开发, 2022, 42(3): 60-65. [15] YANG X Y, ZHANG Y, LI Z H. Embankment displacement PLAXIS simulation and microstructural behavior of treated-coal gangue[J]. Minerals, 2020, 10(3): 218. doi: 10.3390/min10030218 [16] ZHANG Y, YANG X Y, TIGHE S. Evaluation of mechanical properties and microscopic structure of coal gangue after aqueous solution treatment[J]. Materials (Basel) , 2019, 12(19): 3207. doi: 10.3390/ma12193207 [17] GUAN J F, LU M, YAO X H, et al. An Experimental study of the road performance of cement stabilized coal gangue[J]. Crystals, 2021, 11(8): 993. doi: 10.3390/cryst11080993 [18] ZHANG X R, TIAN Y R, LIU J F, et al. Evaluation of modified permeable pavement systems with coal gangue to remove typical runoff pollutants under simulated rainfall[J]. Water Science and Technology, 2021, 83(2): 381-395. doi: 10.2166/wst.2020.574 [19] YE T T, MIN X Y, JIANG X Z, et al. Adsorption and desorption of coal gangue toward available phosphorus through calcium-modification with different Ph[J]. Minerals, 2022, 12(7): 801. doi: 10.3390/min12070801 [20] LI L H, LONG G C, BAI C N, et al. Utilization of coal gangue aggregate for railway roadbed construction in practice[J]. Sustainability, 2020, 12(11): 4583. doi: 10.3390/su12114583 [21] WANG A G, LIU P, MO L W, et al. Mechanism of thermal activation on granular coal gangue and its impact on the performance of cement mortars[J]. Journal of Building Engineering, 2022, 45: 103616. doi: 10.1016/j.jobe.2021.103616 [22] SHEN L L, ZHANG J X, LAI W A, et al. Microstructure and mechanical behaviors of coal gangue - Coal slime water backfill cementitious materials[J]. Journal of Materials Research and Technology, 2022, 20: 3772-3783. doi: 10.1016/j.jmrt.2022.08.089 [23] HAO Y, GUO X N, YAO X H, et al. Using Chinese coal gangue as an ecological aggregate and its modification: A Review[J]. Materials (Basel) , 2022, 15(13): 4995. [24] ZHU X X, GUO Z H, YANG W, et al. Durability of concrete with coal gasification lag and coal gangue powder[J]. Frontiers in Materials, 2022, 8: 791178. doi: 10.3389/fmats.2021.791178 [25] GAO S, ZHANG S M, GUO L H. Application of coal gangue as a coarse aggregate in green concrete production: A Review[J]. Materials (Basel) , 2021, 14(22): 6803. doi: 10.3390/ma14226803 [26] WANG Y S, QIU J P, DENG W, et al. Factors affecting brittleness behavior of coal-gangue ceramsite lightweight aggregate concrete[J]. Frontiers in Materials, 2020, 7: 554718. doi: 10.3389/fmats.2020.554718 [27] DONG Z C, XIA J W, FAN C, et al. Activity of calcined coal gangue fine aggregate and its effect on the mechanical behavior of cement mortar[J]. Construction and Building Materials, 2015, 100: 63-69. doi: 10.1016/j.conbuildmat.2015.09.050 [28] GUAN X, CHEN J X, ZHU M Y, et al. Performance of microwave-activated coal gangue powder as auxiliary cementitious material[J]. Journal of Materials Research and Technology, 2021, 14: 2799-2811. doi: 10.1016/j.jmrt.2021.08.106 [29] ZHANG D M, SUN F J, LIU T T, et al. Study on preparation of coal gangue-based geopolymer concrete and mechanical properties[J]. Advances in Civil Engineering, 2021, 2021: 1-13. [30] 罗凯, 李军, 曾计生, 等. 活化煤矸石-石灰石复合水泥的性能研究[J]. 武汉理工大学学报, 2022, 44(7): 10-15. doi: 10.3963/j.issn.1671-4431.2022.07.002 [31] 杨秋宁, 景严谊, 张东生. 纤维及矿物掺合料对煤矸石混凝土力学性能的改性研究[J]. 功能材料, 2022, 53(7): 7150-7156. [32] YANG J K, LU H J, ZHANG X, et al. An experimental study on solidifying municipal sewage sludge through skeleton building using cement and coal gangue[J]. Advances in Materials Science and Engineering, 2017, 2017: 1-13. [33] ZHANG W Q, DONG C W, HUANG P, et al. Experimental study on the characteristics of activated coal gangue and coal gangue-based geopolymer[J]. Energies, 2020, 13(10): 2504. doi: 10.3390/en13102504 [34] CHENG Y, MA H Q, CHENG H Y, et al. Preparation and characterization of coal gangue geopolymers[J]. Construction and Building Materials, 2018, 187: 318-26. doi: 10.1016/j.conbuildmat.2018.07.220 [35] HUANG G D, JI Y S, LI J, et al. Improving strength of calcinated coal gangue geopolymer mortars via increasing calcium content[J]. Construction and Building Materials, 2018, 166: 760-768. doi: 10.1016/j.conbuildmat.2018.02.005 [36] GENG J J, ZHOU M, ZHANG T, et al. Preparation of blended geopolymer from red mud and coal gangue with mechanical co-grinding preactivation[J]. Materials and Structures, 2016, 50(2): 109. [37] HAN R C, GUO X N, GUAN J F, et al. Activation mechanism of coal gangue and its impact on the properties of geopolymers: A Review[J]. Polymers (Basel) , 2022, 14(18): 3861. doi: 10.3390/polym14183861 [38] YANG X Y, ZHANG Y, LIN C. Compressive and flexural properties of ultra-fine coal gangue-based geopolymer gels and microscopic mechanism analysis[J]. Gels, 2022, 8(3): 145. doi: 10.3390/gels8030145 [39] YANG X Y, ZHANG Y, LIN C. Microstructure analysis and effects of single and mixed activators on setting time and strength of coal gangue-based geopolymers[J]. Gels, 2022, 8(3): 195. doi: 10.3390/gels8030195 [40] GUAN H B, YU J T, UMUHUZA KIBUGENZA A S, et al. Preparation of coal gangue ceramsite high-strength concrete and investigation of its physico-mechanical properties[J]. Scientific Reports, 2022, 12(1): 16369. doi: 10.1038/s41598-022-20940-y [41] DANG W, HE H Y. Glass-ceramics fabricated by efficiently utilizing coal gangue[J]. Journal of Asian Ceramic Societies, 2020, 8(2): 365-372. doi: 10.1080/21870764.2020.1743417 [42] WANG C L, REN Z Z, ZHENG Y C, et al. Effects of heat treatment system on mechanical strength and crystallinity of CaO-MgO- Al2O3-SiO2 glass-ceramics containing coal gangue and iron ore tailings[J]. Journal of New Materials for Electrochemical Systems, 2020, 22(2): 70-78. doi: 10.14447/jnmes.v22i2.a02 [43] 湛玲丽, 韩利雄, 李璟玮, 等. 高掺量煤矸石固废微晶玻璃结构与性能研究[J]. 硅酸盐通报, 2022, 41(4): 1124-1132. doi: 10.3969/j.issn.1001-1625.2022.4.gsytb202204002 [44] 罗冰, 张淑君, 石丽, 等. 煤矸石直接烧结法制备微晶玻璃[J]. 矿产保护与利用, 2022, 42(4): 113-120. [45] LI H, ZHENG F, WANG J, et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance[J]. Chemical Engineering Journal, 2020, 390: 124513. doi: 10.1016/j.cej.2020.124513 [46] LI H, LI M J, ZHENG F, et al. Efficient removal of water pollutants by hierarchical porous zeolite-activated carbon prepared from coal gangue and bamboo[J]. Journal of Cleaner Production, 2021, 325: 129322. doi: 10.1016/j.jclepro.2021.129322 [47] ZHANG M S, WANG X L. Preparation of a gangue-based X-type zeolite molecular sieve as a multiphase Fenton Catalyst and its catalytic performance[J]. ACS Omega, 2021, 6(28): 18414-18425. doi: 10.1021/acsomega.1c02469 [48] KONG D S, JIANG R L. Preparation of NaA zeolite from high iron and quartz contents coal gangue by acid leaching—alkali melting activation and hydrothermal synthesis[J]. Crystals, 2021, 11(10): 1198. doi: 10.3390/cryst11101198 [49] 王万军, 赵彦巧. 青峰煤矸石矿物学特征及分子筛制备研究[J]. 矿产保护与利用, 2006(6): 18-23. doi: 10.3969/j.issn.1001-0076.2006.06.005 [50] GU J, JI C, FU R, et al. Robust SiO2-Al2O3/Agarose composite aerogel beads with outstanding thermal insulation based on coal gangue[J]. Gels, 2022, 8(3): 165. doi: 10.3390/gels8030165 [51] WEI J, ZHU P H, SUN H. Ambient-dried silica aerogel powders derived from coal gangue by using one-pot method[J]. Materials (Basel) , 2022, 15(4): 1454. doi: 10.3390/ma15041454 [52] 郝名远, 陈欢乐, 李淑敏, 等. 煤矸石制备气凝胶研究进展[J]. 矿产保护与利用, 2022, 42(1): 172-178. [53] YANG Q C, ZHANG F, DENG X J, et al. Extraction of alumina from alumina rich coal gangue by a hydro-chemical process[J]. Royal Society Open Science, 2020, 7(4): 192132. doi: 10.1098/rsos.192132 [54] 范剑明. 高铝煤矸石铝硅分级提取实验研究[J]. 无机盐工业, 2019, 51(11): 65-68. doi: 10.11962/1006-4990.2019-0017 [55] KONG D S, ZHOU Z H, JIANG R, et al. Extraction of aluminum and iron ions from coal gangue by acid leaching and kinetic analyses[J]. Minerals, 2022, 12(2): 215. doi: 10.3390/min12020215 [56] 耿学文, 马鸿文, 苏双青, 等. 高铝煤矸石脱硅滤饼碱石灰烧结法制备氢氧化铝的实验研究[J]. 矿物岩石地球化学通报, 2012, 31(6): 635-639. [57] 滕英跃, 张永锋, 白杰, 等. 高铝煤矸石制备超细氧化铝和硅酸钠联产工艺[J]. 化工进展, 2011, 30(2): 456-462. [58] ZHANG K N, ZHANG H, LIU L S, et al. Dispersibility of kaolinite-rich coal gangue in rubber matrix and the mechanical properties and thermal stability of the composites[J]. Minerals, 2021, 11(12): 1388. doi: 10.3390/min11121388 [59] HUANG Y L, LI J M, SONG T Q, et al. Microstructure of coal gangue and precipitation of heavy metal elements[J]. Journal of Spectroscopy, 2017, 2017: 1-9. [60] 贾鲁涛, 吴倩云. 煤矸石特性及其资源化综合利用现状[J]. 煤炭技术, 2019, 38(11): 37-40. doi: 10.13301/j.cnki.ct.2019.11.014 [61] XIE M Z, LIU F Q, ZHAO H L, et al. Mineral phase transformation in coal gangue by high temperature calcination and high-efficiency separation of alumina and silica minerals[J]. Journal of Materials Research and Technology, 2021, 14: 2281-2288. doi: 10.1016/j.jmrt.2021.07.129 [62] 中华人民共和国六盘水市人民政府办公室. 推进煤矸石消纳为煤炭产业可持续发展解困的建议[EB/OL ]. [2023-09-10]. http://www.gzlps.gov.cn/hdjl/jytabl/zxta/zxwyta/202309/t20230906_82326319.html. [63] 惠鹏岳. 煤矸石的特性分析及综合利用研究[J]. 内蒙古煤炭经济, 2023, 366(1): 70-72. [64] 宋欢, 刘利波, 徐宏祥. 准格尔露天矿高品质煅烧高岭土分选工艺研究[J]. 煤炭加工与综合利用, 2021(11): 81-5+91. [65] 范剑明. 准格尔煤田高铝煤矸石矿物特征及热活性研究[J]. 煤炭加工与综合利用, 2017(11): 74-7+84+8. doi: 10.16200/j.cnki.11-2627/td.2017.11.021 [66] 谭雪莲, 沈怡青, 赵韩娣. 我国粉煤灰、煤矸石综合利用政策分析[J]. 粉煤灰综合利用, 2014(1): 49-53. doi: 10.3969/j.issn.1005-8249.2014.01.015 [67] 吴滨, 杨敏英. 我国粉煤灰、煤矸石综合利用技术经济政策分析[J]. 中国能源, 2012, 34(11): 8-11+45. doi: 10.3969/j.issn.1003-2355.2012.11.002 [68] 民建韶关市委员会. 推进煤矸石资源综合利用 推动韶关绿色发展[N]. 韶关日报, 2022-07-20 (A04) . [69] 李鹏, 夏元鹏, 张立魁, 等. 煤矸石综合利用产业政策和发展方向[J]. 陕西地质, 2021, 39(2): 96-101. doi: 10.3969/j.issn.1001-6996.2021.02.013 [70] 青方. 国外煤矸石处理及其经济效益[J]. 河北煤炭, 1990(4): 53-55. [71] 鲍丽萍. 鄂尔多斯市煤矸石综合利用路径研究[J]. 北方经济, 2023, 425(4): 60-63. doi: 10.3969/j.issn.1007-3590.2023.04.016 [72] 张伟辉. 煤矸石综合利用存在的问题及对策分析[J]. 能源与节能, 2021(2): 101-102. doi: 10.16643/j.cnki.14-1360/td.2021.02.045 [73] 李贞, 王俊章, 申丽明, 等. 煤矸石物化成分对其资源化利用的影响[J]. 洁净煤技术, 2020, 26(6): 34-44. doi: 10.13226/j.issn.1006-6772.20021801 [74] ZHANG Y L, LING T-C. Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials – A review[J]. Construction and Building Materials, 2020, 234: 117424. doi: 10.1016/j.conbuildmat.2019.117424 [75] KONG D S, ZHOU Z H, SONG S J, et al. Preparation of Poly Aluminum-Ferric Chloride (PAFC) coagulant by extracting aluminum and iron ions from high iron content coal gangue[J]. Materials (Basel) , 2022, 15(6): 2253. doi: 10.3390/ma15062253 [76] LV B, ZHAO Z Y, DENG X W, et al. Sustainable and clean utilization of coal gangue: activation and preparation of silicon fertilizer[J]. Journal of Material Cycles and Waste Management, 2022, 24(4): 1579-1590. doi: 10.1007/s10163-022-01426-5 [77] ZHANG H, ZHAO R B, LIU Z L, et al. Enhanced adsorption properties of polyoxometalates/coal gangue composite: The key role of kaolinite-rich coal gangue[J]. Applied Clay Science, 2023, 231: 106730. doi: 10.1016/j.clay.2022.106730 [78] WANG J, FANG L, CHENG F Q, et al. Hydrothermal synthesis of SBA-15 using sodium silicate derived from coal gangue[J]. Journal of Nanomaterials, 2013, 2013: 1-6. [79] 李宏伟, 燕可洲, 文朝璐, 等. 煤矸石制备活性炭-介孔硅复合材料及其过程物相转变[J/OL]. 煤炭科学技术: 1-11. [80] ZHANG X, LI M, SU Y G, et al. A novel and green strategy for efficient removing Cr (VI) by modified kaolinite-rich coal gangue[J]. Applied Clay Science, 2021, 211: 106208. doi: 10.1016/j.clay.2021.106208 [81] ZHAO R B, ZHANG X, SU Y G, et al. Unprecedented catalytic activity of coal gangue toward environmental remediation: Key role of hydroxyl groups[J]. Chemical Engineering Journal, 2020, 380: 122432. doi: 10.1016/j.cej.2019.122432 [82] 解传娣, 张雷. 利用煤矸石和废玻璃制备发泡陶瓷材料及其性能的研究[J]. 中国陶瓷, 2022, 58(5): 51-56+64. [83] 赵绘婷, 董龙浩, 谢梅竹, 等. 以煤矸石制备发泡陶瓷的研究[J]. 中国陶瓷工业, 2022, 29(3): 26-30. doi: 10.13958/j.cnki.ztcg.2022.03.006