-
有害物质如石油化工物质和其他有毒化合物的泄露或无序排放,污染临近土壤、地下水以及地表水体,对人类生活和环境健康构成了重大威胁,亟需对污染场地进行修复[1-3]。对于高渗污染场地而言,已经开发出了多种修复方法,如原位氧化和多相抽提等。原位氧化修复通过向污染场地中注入修复药剂,使得有害物质被氧化分解,从而减轻或消除污染[4-6]。而多相抽提则是一种物理修复方法,它通过改变土壤中的气压或水压促进污染物流动并抽出[7-8]。这些方法已在实践中得到了广泛的应用。然而,对于低渗场地 (K < 10−4 cm·s−1),由于极大的传质限制,原位氧化和多相抽提在提高修复药剂的注入和压力施加方面都存在很大困难[9-11]。
面对低渗场地修复的难题,水力压裂是一种有效的解决方案[11-14]。水力压裂是一种以高压液体注入低渗地层形成裂缝通道,从而提高其渗透性的技术[15-18]。在污染场地修复中,水力裂缝作为优渗通道可有效减小修复药剂与目标反应区的运移距离,从加快污染场地的修复速度、提高修复效率[13]。例如CHEN等[12]提出了多井注入条件下修复药剂强化输运的解析模型,分析了裂缝参数和注入参数对修复药剂运移特征的影响,发现裂缝中药剂浓度为均匀分布的线源时药剂利用率最高。此外,在水力压裂过程中,通过将修复药剂与裂缝支撑剂混合注入裂缝形成修复药剂夹层也可有效加快低渗污染场地修复。FENG和CHEN[14]的研究表明,修复药剂填充的裂缝 (称为反应性裂缝) 可作为内置修复药剂线源通过对流和扩散进入周围的低渗土壤基质,有效缩短了药剂源到达修复区域的距离。然而,现有研究中流场通常假设为自然水力梯度下的层流过程导致裂缝强化传质的机制仍不清晰。此外,场地异质性对修复药剂运移的影响也鲜有研究。
针对低渗污染场地,结合注入-抽提技术,构建了水力裂缝强化氧化药剂输运的数值模型。通过注入-抽提技术在场地形成稳定流场,对比了裂缝对场地压力、流速、药剂浓度分布的影响,揭示裂缝强化传质机制。通过地统计学方法生成随机渗透率场模拟场地异质性,将其嵌入构建的数值模型,研究渗透率的空间变异性对修复药剂注入-运移的影响,提出了异质性场地药剂注入策略的一般性建议。
低渗污染场地水力压裂强化修复药剂输运机制
Mechanisms of amendment transport in low-permeability contaminated sites enhanced by hydraulic fracturing
-
摘要: 由于低渗透污染场地较低的渗透特性极大限制了修复药剂的注入和运移,导致传统修复方法的治理效率低下。水力压裂作为强化传质的有效手段已得到广泛认可。因此结合注入-抽提技术,构建了低渗污染场地中考虑水力压裂的修复药剂强化输运数值模型。该模型考虑了修复药剂输运的对流、扩散、吸附和降解机制,研究了水力裂缝对低渗场地中修复药剂运移的强化作用。并基于地统计学方法生成随机渗透率场以研究异质性对修复药剂输运和分布的影响。结果表明,水力裂缝可通过形成优渗通道、强化压力传递等方式有效促进修复药剂的运移,相比于低渗场地,压裂场地中修复药剂的影响范围至少增大50%;场地的异质性会导致药剂浓度出现显著波动和局部浓度聚集,且波动程度随着异质性的增大而增强,因此造成弱异质性场地特定位置药剂缺失率在7.14%左右,而强异质性场地药剂缺失率高达28.57%。Abstract: Due to the low permeability characteristics of contaminated clay sites, the injection and migration of amendments are significantly hindered, leading to a reduced efficiency of traditional remediation methods. Hydraulic fracturing, as an effective means of enhancing mass transfer, has been widely recognized. Hence, in conjunction with the injection-extraction technique, this study developed a numerical model for the enhanced transport of amendments in low-permeability contaminated sites by hydraulic fracturing that considers the convection, diffusion, adsorption, and degradation mechanisms and investigates the enhancing role of hydraulic fractures in the transport of amendments in low-permeability environments. Based on geostatistical methods, a random permeability field was generated to study the influence of heterogeneity on the transport and distribution of amendments. The results indicate that hydraulic fractures can effectively promote the migration of amendments by forming preferential flow paths and intensifying pressure transmission. Compared to low-permeability sites, the influence range of amendments in fractured sites increased by at least 50%. The heterogeneity of the site leads to significant fluctuations in the concentration of amendments and localized concentration accumulations and the degree of fluctuation increases with the increase in heterogeneity. As a result, this results in a location-specific amendment missing rate of around 7.14% for weakly heterogeneous sites and up to 28.57% for strongly heterogeneous sites.
-
表 1 本研究使用的模型参数
Table 1. Model parameters in this study
参数符号 参数值 参数含义 H 10 m 深度 L 20 m 长度 b 0.01 m 裂缝孔径 θm 0.35 土壤孔隙率 θf 0.8 裂缝孔隙率 Dm 1×10−9 m2·s−1 土壤中扩散系数 Df 1×10−8 m2·s−1 裂缝中扩散系数 Km 1×10−14 m2 土壤固有渗透率 Kf 1×10−8 m2 裂缝固有渗透率 pin 700 kPa 注入压力 pex 700 kPa 抽提压力 R 1.0 阻滞因子 λm 1×10−11 s−1 土壤中一阶降解系数 λf 1×10−10 s−1 裂缝中一阶降解系数 η 0.2 m 井筛高度 C0 1 g·L−1 修复药剂浓度 n 1.0 随机场logK期望 σ2 0.5 随机场logK方差 l 0.1 相关长度 s 1.0 缩放因子 M1 0.5 卷积核尺寸 (强异质性) M2 1.5 卷积核尺寸 (弱异质性) -
[1] LIU L, LI W, SONG W, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environment, 2018, 633: 206-219. doi: 10.1016/j.scitotenv.2018.03.161 [2] DING X H, FENG S J, ZHENG Q T. A two-dimensional analytical model for contaminant transport in a finite domain subjected to multiple arbitrary time-dependent point injection sources[J]. Journal of Hydrology, 2021, 597: 126318. doi: 10.1016/j.jhydrol.2021.126318 [3] 潘云飞, 唐正, 彭欣怡, 等. 石油烃污染土壤微生物修复技术研究现状及进展[J]. 化工进展, 2021, 40(8): 4562-4572. [4] ZHOU Z, LIU X, SUN K, et al. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review[J]. Chemical Engineering Journal, 2019, 372: 836-851. doi: 10.1016/j.cej.2019.04.213 [5] 章生卫, 程小谷, 于李罡, 等. 石油烃污染地下水原位化学氧化修复研究[J]. 环境科学与技术, 2021, 44(S1): 56-60. [6] USMAN M, JELLALI S, ANASTOPOULOS I, et al. Fenton oxidation for soil remediation: A critical review of observations in historically contaminated soils[J]. Journal of Hazardous Materials, 2022, 424: 127670. doi: 10.1016/j.jhazmat.2021.127670 [7] QI S, LUO J, O'CONNOR D, et al. A numerical model to optimize LNAPL remediation by multi-phase extraction[J]. Science of the Total Environment, 2020, 718: 137309. doi: 10.1016/j.scitotenv.2020.137309 [8] KACEM M, BENADDA B. Mathematical model for multiphase extraction simulation[J]. Journal of Environmental Engineering, 2018, 144(6): 04018040. doi: 10.1061/(ASCE)EE.1943-7870.0001378 [9] REDDY K R, MATURI K, CAMESELLE C. Sequential electrokinetic remediation of mixed contaminants in low permeability soils[J]. Journal of environmental engineering, 2009, 135(10): 989-998. doi: 10.1061/(ASCE)EE.1943-7870.0000077 [10] 田蕾, 胡立堂, 张梦琳. 低渗透石化污染场地多相抽提修复效率的数值模拟[J]. 中国环境科学, 2022, 42(2): 925-935. [11] ZHAO S, ZHANG J, FENG S J. The era of low-permeability sites remediation and corresponding technologies: A review[J]. Chemosphere, 2022: 137264. [12] CHEN H, FENG S J, ZHENG Q T, et al. Enhanced delivery of amendments in fractured clay sites based on multi-point injection: An analytical study[J]. Chemosphere, 2022, 297: 134086. doi: 10.1016/j.chemosphere.2022.134086 [13] CHEN, H. , FENG, S. J. Evaluation and application of fractal-based hydraulic constitutive model for unsaturated flow in heterogeneous soils[J]. Computers and Geotechnics, 2023, 159: 105497. doi: 10.1016/j.compgeo.2023.105497 [14] FENG S J, CHEN H. Enhanced delivery of amendments in contaminated low-permeability soils by hydraulic fracturing[J]. Journal of Hydrology, 2023, 622: 129678. doi: 10.1016/j.jhydrol.2023.129678 [15] MURDOCH L C. Hydraulic fracturing of soil during laboratory experiments Part 1. Methods and observations[J]. Geotechnique, 1993, 43(2): 255-265. doi: 10.1680/geot.1993.43.2.255 [16] WANG S Y, SUN L, AU A S K, et al. 2D-numerical analysis of hydraulic fracturing in heterogeneous geo-materials[J]. Construction and Building Materials, 2009, 23(6): 2196-2206. doi: 10.1016/j.conbuildmat.2008.12.004 [17] CHEN S S, SUN Y, TSANG D C W, et al. Insights into the subsurface transport of As (V) and Se (VI) in produced water from hydraulic fracturing using soil samples from Qingshankou Formation, Songliao Basin, China[J]. Environmental Pollution, 2017, 223: 449-456. doi: 10.1016/j.envpol.2017.01.044 [18] BJERRUM L, NASH J, KENNARD R M, et al. Hydraulic fracturing in field permeability testing[J]. Geotechnique, 1972, 22(2): 319-332. doi: 10.1680/geot.1972.22.2.319