-
随着工农业生产的迅速发展和社会人口的不断增长,各种施加在地表的污染物随下渗的水经过非饱和带进入地下水中,导致土壤和地下水污染问题加剧[1],在此背景下,高效的地下水污染修复技术和装备已经成为全球的普遍需求。目前,地下水污染修复领域已发展出多种原位及异位修复技术,诸如抽出-处理、曝气、多相抽提、化学修复、生物修复以及循环井技术[2-5]。这些技术在一些发达国家的实际应用中已取得显著成效。然而,由于水文地质条件的复杂性以及污染物的多样性[6-7],这些地下水污染修复技术在特定场地的应用中存在显著的不确定性,不同场地间的修复成效差异较大。
为了适应各类地下水污染情况和特定场地的水文地质条件,满足地下水污染修复技术的应用需求,大量先进的修复装备不断地被研发和优化[8]。例如,为了有效实施抽出-处理技术,研发了高效的抽水设备和精密的水处理系统[9-10];此外,针对化学修复技术,研发了化学试剂自动精准投加装备[11],以确保污染物能被有效降解或稳定化。
我国地下水修复技术及装备的研发仍处于起步阶段,与国际先进水平相比尚有较大差距。但随着国家对地下水污染场地问题的重视,加之政策倾斜,未来发展潜力巨大。分析地下水修复技术及装备产业环境存在的不足、探讨解决发展困局的措施显得尤为迫切。本文从地下水修复技术研究和地下水修复装备应用两方面进行阐述,归纳其研究现状及趋势并针对发展机遇及挑战进行了展望,以期为我国地下水污染修复行业的发展提供借鉴。
地下水污染修复技术及装备研发现状与展望 (代序言)
R&D status and prospect of groundwater pollution remediation technology and equipment
-
摘要: 地下水作为重要的水资源,在农业、生活和工业等方面扮演着重要角色。尽管我国目前遏制了地下水污染持续加剧的状况,但地下水污染及后续修复问题仍需要高度重视,地下水修复涉及技术研究及装备应用两个方面,分别回顾了国内外的研究进展并对未来的研究进行了展望。首先对地下水异位及原位修复技术进行了概述。基于中国知网 (CNKI) 和Web of Science (WOS) 数据库检索了近15年有关地下水原位和异位修复技术的应用研究,借助文献计量学软件CiteSpace进行深度分析。结果表明,WOS发文量自2011年起逐步提升,而CNKI发文量自2017年起开始有明显的上升趋势,这显示我国关于地下水修复技术的研究相比国外起步更晚。同时,关键词聚类和突现结果表明地下水修复技术研究经历了由低效率单一修复技术向多技术耦合进行高效绿色修复发展的过程。此外,综述了国内外主要修复装备的特点及应用情况,目前国外已有大量成熟的原位修复技术及相关装备应用案例,而我国的修复技术仍旧以异位修复为主,对于原位修复技术与装备的研发,相比国际先进水平还存在较大差距。最后,文章提出了针对当前挑战的多方面对策建议,如跨学科合作、加大研发投入等,以促进地下水修复技术和装备在国内的发展和应用。Abstract: Groundwater, as a crucial water resource, plays a significant role in agriculture, domestic life, and industry. Although China has currently mitigated the continuous worsening of groundwater pollution, the issues of groundwater contamination and subsequent remediation still require significant attention. Groundwater remediation involves both technical research and equipment application. This paper reviewed the progress of research in these areas domestically and internationally and provided an outlook on future research directions. First, an overview of ex-situ and in-situ groundwater remediation technologies was presented. Based on a bibliometric analysis using CiteSpace, derived from data retrieved from the China National Knowledge Infrastructure (CNKI) and Web of Science (WOS) databases over the past 15 years, the results indicated that the number of publications in WOS had gradually increased since 2011. In contrast, the number of publications in CNKI showed a significant rise only from 2017 onwards. This consequently demonstrated that China's research on groundwater remediation technologies commenced later than that in other countries. Furthermore, keyword clustering and burst detection results revealed that the research on groundwater remediation technologies had evolved from low-efficiency, single remediation methods to high-efficiency, green remediation through multi-technology coupling. Moreover, the characteristics and applications of major remediation equipment used domestically and internationally ware reviewed. Currently, numerous mature in-situ remediation technologies and associated equipment application cases existed abroad. However, China's remediation technologies predominantly relied on ex-situ methods, and there remained a considerable gap compared to international advanced levels in the development of in-situ remediation technologies and equipment. Finally, the paper proposed several countermeasures to address current challenges, such as promoting interdisciplinary collaboration and increasing investment in research and development. These measures aimed to advance the development and application of groundwater remediation technologies and equipment in China.
-
图 1 抽出-处理技术示意图[18]
Figure 1. Schematic diagram of pump-and-treat technology
图 6 抽出-处理装置实物图[64]
Figure 6. Physical drawing of the pump&treat unit
图 7 曝气系统装置实物图[65]
Figure 7. Physical drawing of aeration system device
图 8 多相抽提系统装置实物图[66]
Figure 8. Physical diagram of the multi-phase extraction system unit
图 9 IEG-GCW系统安装及实物应用图[69]
Figure 9. IEG-GCW system installation and physical application drawing
图 10 GY-BOX-P&T 4S/2MS设备实物图[73]
Figure 10. Physical drawing of GY-BOX-P&T 4S/2MS equipment
表 1 不同原位修复技术的适用性及优缺点
Table 1. Application, advantages and disadvantages of different in-situ restoration techniques
修复技术 适用目标污染物 适用场地条件 优势 劣势 修复时间 生物修复技术 易生物降解的有机污染物 适用于孔隙、裂隙、岩溶含水层 对环境影响较小 部分地下水环境不适宜微生物生长 周期较长,需要数年到数十年 曝气技术 苯系物和氯代烃等 适用于具有较大厚度和埋深的含水层 对修复地块干扰小;设备简单,施工方便 不适用于非挥发性的污染物;可能导致地下水中污染扩散;气体可能会迁移和释放到地表,造成二次污染 周期较短,需要数月到数年 化学修复技术 重金属、石油烃、酚类、甲基叔丁基醚、氯代烃、多环芳烃和农药等 适用于渗透性较好的孔隙、裂隙和岩溶含水层 反应速度快,修复时间短 地块水文地质条件可能会限制化学物质的传输;受地下水部分参数变化影响较大;部分污染物的修复效果不稳定,可能会造成二次污染 周期较短,需要数月到数年 多相抽提技术 石油烃和氯代烃等 不适用于渗透性差或者地下水水位变动较大的地块 可处理易挥发、易流动的非水溶性
液体效果受地块水文地质条件和污染物分布影响较大;需要对抽提出的气体和液体进行后续处理 周期较短,需要数月到数年 循环井技术 卤代烃、苯系物等多种有机污染物和挥发性有机污染物 适用于孔隙、裂隙、岩溶含水层 可耦合多种修复技术,技术简单,修复效果好 井体可能产生化学堵塞,影响地下水的循环;对系统的设计要求较高 周期较短,需要数月到数年 表 2 关键词突现分析表
Table 2. Keyword emergence analysis table
表 3 常用循环井系统主要装备及特点
Table 3. Main equipment and characteristics of commonly used circulating well systems
循环井系统 主要装备 技术要点 应用范围 NOVOCs系统 内井、外井组成井体(内外井管之间液压分离)、注气、抽气泵机及尾气处理装备 通过向含水层注入高压空气产生地下水循环流,并吹出挥发性污染物,通过真空抽提把污染物抽到地面进行处理。 可运用于粉质粘土到砂砾石等各种土壤类型 UVB系统 注气井被替换为提升泵 被提升的地下水通过脱附反应器去除水体中的挥发性污染物,而污染气体被抽提到地面进行处理,循环井上下滤水管用封隔器隔开,无直接的水力联系。 可应用于渗透性较差场地 DDC系统 井管和注气管 吹脱出的污染物引入包气带以进行微生物的降解,无地表气体处理系统。 对场地包气带的厚度、
渗透性以要求较高表 4 国内异位修复装备相关参数
Table 4. Parameters related to domestic ex situ repair equipment
修复装备 功率 /kW 处理能力 尺寸 /m 适用污染物 GY-BOX-P&T 4S 20 9.8 (t∙d−1) 12.12×2.48×2.9 有机污染 GY-BOX-P&T 2MS 35 40 (t∙d−1) 12.12×2.48×2.9 重金属、有机污染、悬浮颗粒 芬顿高级氧化一体化设备 35 15~20 (m3∙h−1) 9.3×2.4×2.8 有机污染 臭氧高级催化氧化集成修复设备 75 5~10 (m3∙h−1) 9.7×2.3×6.5 苯系物、酚类等有机物和氰化物污染 组合气浮一体化设备 15.8 25 (m3∙h−1) 7.2×2.0×2.6 石油烃污染 XJ-CT2 15 20 (t∙d−1) 6.5×2×2.5 挥发性有机物 XJ-HN10 8.56 20 (t∙d−1) 8×3×3 重金属污染 -
[1] TEW K, FETTER CW, BOVING T, et al. Contaminant Hydrogeology[J]. Environmental Earth Sciences, 2018, 77(22): 745. doi: 10.1007/s12665-018-7921-5 [2] CHEN Q, FAN G, NA W, et al. Past, present, and future of groundwater remediation research: A scientometric analysis[J]. International Journal of Environmental Research and Public Health, 2019, 16(20): 3975. doi: 10.3390/ijerph16203975 [3] AL-HASHIMI O A, HASHIM K, LOFFILL E, et al. A comprehensive review for groundwater contamination and remediation: Occurrence, migration and adsorption modelling[J]. Molecules, 2021, 26: 5913. doi: 10.3390/molecules26195913 [4] HASHIM M A, MUKHOPADHYAY S, SAHU J N, et al. Remediation technologies for heavy metal contaminated groundwater[J]. Journal of Environmental Management, 2011, 92(10): 2355-2388. doi: 10.1016/j.jenvman.2011.06.009 [5] CIAMPI P, ESPOSITO C, PETRANGELI PAPINI M. Review on groundwater circulation wells (GCWs) for aquifer remediation: State of the art, challenges, and future prospects[J]. Groundwater for Sustainable Development, 2024, 24: 101068. doi: 10.1016/j.gsd.2023.101068 [6] KALHOR K, GHASEMIZADEH R, RAJIC L, et al. Assessment of groundwater quality and remediation in karst aquifers: A review[J]. Groundwater for Sustainable Development, 2019, 8: 104-121. doi: 10.1016/j.gsd.2018.10.004 [7] CHEN C, SIE Y, LIN Y. A review of the multilevel slug test for characterizing aquifer heterogeneity[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2012, 23: 131. doi: 10.3319/TAO.2011.10.03.01(Hy) [8] 费宇红, 刘雅慈, 李亚松, 等. 中国地下水污染修复方法和技术应用展望[J]. 中国地质, 2022, 49(2): 420-434. [9] TENNEY C M, LASTOSKIE C M, DYBAS M J. A reactor model for pulsed pumping groundwater remediation[J]. Water Research, 2004, 38(18): 3869-3880. doi: 10.1016/j.watres.2004.06.029 [10] KAHLER D M, KABALA Z. Rapidly pulsed pumping accelerates remediation in a vertical circulation well model[J]. Water, 2018, 10: 1423. doi: 10.3390/w10101423 [11] 王海鑫, 王水, 吕宗祥, 等. 一种滴灌式自动注入土壤地下水原位修复药剂注入工艺及装置: ZL202310047333.9[P]. 2023-05-02. [12] MUKHOPADHYAY A, DUTTAGUPTA S, MUKHERJEE A. Emerging organic contaminants in global community drinking water sources and supply: A review of occurrence, processes and remediation[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107560. doi: 10.1016/j.jece.2022.107560 [13] MAJONE M, VERDINI R, AULENTA F, et al. In situ groundwater and sediment bioremediation: Barriers and perspectives at European contaminated sites[J]. New Biotechnology, 2015, 32(1): 133-146. doi: 10.1016/j.nbt.2014.02.011 [14] NEWELL C J, ADAMSON D T, KULKARNI P R, et al. Monitored natural attenuation to manage PFAS impacts to groundwater: Scientific basis[J]. Groundwater Monitoring & Remediation, 2021, 41(4): 76-89. [15] BRUSSEAU M L, GUO Z. Assessing contaminant-removal conditions and plume persistence through analysis of data from long-term pump-and-treat operations[J]. Journal of Contaminant Hydrology, 2014, 164: 16-24. doi: 10.1016/j.jconhyd.2014.05.004 [16] RIVETT M O, CHAPMAN S W, ALLEN-KING R M, et al. Pump-and-Treat remediation of chlorinated solvent contamination at a controlled Field-Experiment site[J]. Environmental Science & Technology, 2006, 40(21): 6770-6781. [17] GUO Z, BRUSSEAU M L, FOGG G E. Determining the long-term operational performance of pump and treat and the possibility of closure for a large TCE plume[J]. Journal of Hazardous Materials, 2019, 365: 796-803. doi: 10.1016/j.jhazmat.2018.11.057 [18] 蒲生彦. 地下水环境调查评估与污染防治分区理论及实践[M]. 北京: 科学出版社, 2023. [19] NASERI-RAD M, BERNDTSSON R, MCKNIGHT U S, et al. INSIDE-T: A groundwater contamination transport model for sustainability assessment in remediation practice[J]. Sustainability, 2021, 13(14): 7596. doi: 10.3390/su13147596 [20] PIERRO L, MATTURRO B, ROSSETTI S, et al. Polyhydroxyalkanoate as a slow-release carbon source for in situ bioremediation of contaminated aquifers: From laboratory investigation to pilot-scale testing in the field[J]. New Biotechnology, 2017, 37: 60-68. doi: 10.1016/j.nbt.2016.11.004 [21] TATTI F, PETRANGELI PAPINI M, TORRETTA V, et al. Experimental and numerical evaluation of Groundwater Circulation Wells as a remediation technology for persistent, low permeability contaminant source zones[J]. Journal of Contaminant Hydrology, 2019, 222: 89-100. doi: 10.1016/j.jconhyd.2019.03.001 [22] PAPINI M, MAJONE M, ARJMAND F, et al. First pilot test on the integration of GCW (Groundwater circulation well) with ENA (Enhanced natural attenuation) for chlorinated solvents source remediation[J]. Chemical Engineering Transactions, 2016, 49: 91-96. [23] ELMORE A C, DEANGELIS L. Modeling a ground water circulation well alternative[J]. Groundwater Monitoring & Remediation, 2004, 24(1): 66-73. [24] AKBARPOUR A, ZEYNALI M J, NAZERI TAHROUDI M. Locating optimal position of pumping wells in aquifer using Meta-Heuristic algorithms and finite element method[J]. Water Resources Management, 2020, 34(1): 21-34. doi: 10.1007/s11269-019-02386-6 [25] 任丽霞. 地下水修复多属性决策分析方法与应用研究[D]. 北京: 华北电力大学, 2017. [26] PARKER J, KIM U, KITANIDIS P, et al. Stochastic cost optimization of DNAPL remediation-Method description and sensitivity study[J]. Environmental Modelling & Software, 2012, 38: 74-88. [27] ZHAO B, SUN Z, LIU Y. An overview of in-situ remediation for nitrate in groundwater[J]. Science of the Total Environment, 2022, 804: 149981. doi: 10.1016/j.scitotenv.2021.149981 [28] YUAN L, WANG K, ZHAO Q, et al. An overview of in situ remediation for groundwater co-contaminated with heavy metals and petroleum hydrocarbons[J]. Journal of Environmental Management, 2024, 349: 119342. doi: 10.1016/j.jenvman.2023.119342 [29] SEOL Y, ZHANG H, SCHWARTZ F. A review of in situ chemical oxidation and heterogeneity[J]. Environmental & Engineering Geoscience, 2003, 9: 37-49. [30] GULERIA A, GUPTA P K, CHAKMA S, et al. Unraveling the fate and transport of DNAPLs in heterogeneous aquifer systems—A critical review and bibliometric analysis[J]. Sustainability, 2023, 15(10): 8214. doi: 10.3390/su15108214 [31] KHAN F I, HUSAIN T, HEJAZI R. An overview and analysis of site remediation technologies[J]. Journal of Environmental Management, 2004, 71(2): 95-122. [32] KUPPUSAMY S, PALANISAMI T, MALLAVARAPU M, et al. In-Situ remediation approaches for the management of contaminated sites: A comprehensive overview[J]. Reviews of environmental contamination and toxicology, 2016, 236: 1-115. [33] REDDY K R, KOSGI S, ZHOU J. A review of In-Situ air sparging for the remediation of VOC-Contaminated saturated soils and groundwater[J]. Hazardous Waste and Hazardous Materials, 1995, 12(2): 97-118. doi: 10.1089/hwm.1995.12.97 [34] 陈勉力, 雷国元, 周达, 等. 空气流体振荡提升曝气溶氧效率的效果及机制[J]. 化工环保, 2023, 43(3): 324-330. doi: 10.3969/j.issn.1006-1878.2023.03.007 [35] 王兵, 师雯, 孙玉波, 等. 陶瓷膜曝气强化臭氧传质研究[J]. 水处理技术, 2022, 48(3): 61-64+69. [36] 裘英华, 高梓浩, 王昊诚. 一种微纳米气泡制备装置及方法: ZL202210973287.0[P]. 2022-11-15. [37] XU W, LI W, WANG J, et al. Numerical simulation of gas–liquid Two-Phase flow CFD-PBM model in a micro–nanobubble generator[J]. Minerals, 2022, 12(10): 1270. doi: 10.3390/min12101270 [38] SHENG G, JOHNSTON C T, TEPPEN B J, et al. Potential contributions of smectite clays and organic matter to pesticide retention in soils[J]. Journal of Agricultural and Food Chemistry, 2001, 49(6): 2899-2907. doi: 10.1021/jf001485d [39] QIN C, ZHAO Y, ZHENG W, et al. Study on influencing factors on removal of chlorobenzene from unsaturated zone by soil vapor extraction[J]. Journal of Hazardous Materials, 2010, 176(1): 294-299. [40] XU L, ZHU L. Structures of OTMA-and DODMA-bentonite and their sorption characteristics towards organic compounds[J]. Journal of Colloid and Interface Science, 2009, 331(1): 8-14. doi: 10.1016/j.jcis.2008.11.030 [41] BALDWIN B R, NAKATSU C H, NEBE J, et al. Enumeration of aromatic oxygenase genes to evaluate biodegradation during multi-phase extraction at a gasoline-contaminated site[J]. Journal of Hazardous Materials, 2009, 163(2): 524-530. [42] 申家宁, 晏井春 , 高卫国, 等. 多相抽提技术在化工污染地块修复中的应用潜力[J]. 环境工程学报, 2021, 15(10): 3286-3296. [43] 陈窈君. 多相抽提-原位化学氧化协同修复技术研究[J]. 环境科学与技术, 2023, 46(02): 1-9. [44] 戴昕, 刘军, 赵慧慧, 等. 受LNAPL污染地下水的AS/MPE联用修复系统及方法: ZL202010926050.8 [P]. 2020-12-29. [45] CUI Y, ZHU Q, WEN Z. An improved sharp interface model for characterizing the transport and extraction of subsurface LNAPL[J]. Journal of Hydrology, 2023, 622: 129664. doi: 10.1016/j.jhydrol.2023.129664 [46] WEI K, MA J, XI B, et al. Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater[J]. Journal of Hazardous Materials, 2022, 432: 128738. doi: 10.1016/j.jhazmat.2022.128738 [47] FAN S, XIN J, HUANG J, et al. Effectiveness of electron transfer and electron competition mechanism in Zero-Valent Iron-Based reductive groundwater remediation systems[J]. Progress in Chemistry, 2018, 30: 1035-1046. [48] RANC B, FAURE P, CROZE V, et al. Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review[J]. Journal of Hazardous Materials, 2016, 312: 280-297. doi: 10.1016/j.jhazmat.2016.03.068 [49] 严梓辰, 余海波, 唐伟, 等. 基于文献计量分析的场地化学氧化修复技术研究热点和趋势[J]. 环境工程学报, 2023, 17(10): 3423-3433. doi: 10.12030/j.cjee.202307100 [50] STROO H F, LEESON A, MARQUSEE J A, et al. Chlorinated ethene source remediation: Lessons learned[J]. Environmental Science & Technology, 2012, 46(12): 6438-6447. [51] ZHAO G, SHENG Y, WANG C, et al. In situ microbial remediation of crude oil-soaked marine sediments using zeolite carrier with a polymer coating[J]. Marine Pollution Bulletin, 2018, 129(1): 172-178. doi: 10.1016/j.marpolbul.2018.02.030 [52] KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276. doi: 10.1038/nrmicro.2018.9 [53] ANNESER B, PILLONI G, BAYER A, et al. High resolution analysis of contaminated aquifer sediments and groundwater-what can be learned in terms of natural attenuation?[J]. Geomicrobiology Journal, 2010, 27: 130-142. doi: 10.1080/01490450903456723 [54] KHAN M A, SHARMA A, YADAV S, et al. Enhancing remediation of RDX-contaminated soil by introducing microbial formulation technology coupled with biostimulation[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106019. doi: 10.1016/j.jece.2021.106019 [55] MICHALSEN M M, KING A S, ISTOK J D, et al. Spatially-distinct redox conditions and degradation rates following field-scale bioaugmentation for RDX-contaminated groundwater remediation[J]. Journal of Hazardous Materials, 2020, 387: 121529. doi: 10.1016/j.jhazmat.2019.121529 [56] HATZINGER P B, STREGER S H, BEGLEY J F. Enhancing aerobic biodegradation of 1, 2-dibromoethane in groundwater using ethane or propane and inorganic nutrients[J]. Journal of Contaminant Hydrology, 2015, 172: 61-70. doi: 10.1016/j.jconhyd.2014.11.006 [57] 邹莎莎. 零价铁/生物强化技术原位修复受氯代烯烃污染的地下水[J]. 净水技术, 2023, 42(S1): 227-233+269. [58] STAMM. Vertical circulation flows for vadose and groundwater zone in situ (bio-)remediation[J]. 1995. [59] ZHAO Y, QU D, ZHOU R, et al. Efficacy of forming biofilms by Pseudomonas migulae AN-1 toward in situ bioremediation of aniline-contaminated aquifer by groundwater circulation wells[J]. Environmental Science and Pollution Research, 2016, 23(12): 11568-11573. doi: 10.1007/s11356-016-6737-7 [60] YUAN S, LIU Y, ZHANG P, et al. Electrolytic groundwater circulation well for trichloroethylene degradation in a simulated aquifer[J]. Science China Technological Sciences, 2021, 64(2): 251-260. doi: 10.1007/s11431-019-1521-7 [61] 蒲生彦, 王宇, 王朋. 地下水循环井修复技术与应用: 关键问题、主要挑战及解决策略[J]. 安全与环境工程, 2021, 28(3): 78-86. [62] LI X, LI Z, CAILI D, et al. Bibliometric analysis of zerovalent iron particles research for environmental remediation from 2000 to 2019[J]. Environmental Science and Pollution Research, 2021, 28. [63] 张莉, 刘菲, 袁慧卿, 等. 地下水抽出处理技术研究进展与展望[J]. 现代地质, 2023, 37(04): 977-985. [64] U. S. Environmental Protection Agency. Remediation [EB/OL]. [2024-01-31].https://www.clu-in.org/techfocus/. pdf, 2021. [65] U. S. Environmental Protection Agency. Air sparging/ high vacuum extraction to remove chlorinated solvents in groundwater and soil [EB/OL]. [2024-01-31].https://www.clu-in.org/techfocus/default.focus/sec/Air%5FSparging/cat/Application/. pdf, 1998. [66] U. S. Environmental Protection Agency. Multi-phase extraction: state-of-the-practice [EB/OL]. [2024-01-31].https://www.clu-in.org/techfocus/default.focus/sec/Multi%2DPhase%5FExtraction/cat/Application/. pdf, 1999. [67] REECE J, CHRISTENSON M, KAMBHU A, et al. Remediating contaminated groundwater with an aerated, Direct-Push, oxidant delivery system[J]. Water, 2020, 12(12): 3383. doi: 10.3390/w12123383 [68] MILLER C, RUFFING S, KLINE R. Solar-powered in situ soil washing with surfactant to collect LNAPL[J]. Remediation Journal, 2012, 22(2): 69-79. doi: 10.1002/rem.21311 [69] IEG Technologie GmbH. Soil and groundwater remediation and aquifer restoration [EB/OL]. [2024-01-31].https://ieg-technology.com. pdf. [70] CIAMPI P, ESPOSITO C, BARTSCH E, et al. Remediation of chlorinated aliphatic hydrocarbons (CAHs) contaminated site coupling groundwater recirculation well (IEG-GCW®) with a peripheral injection of soluble nutrient supplement (IEG-C-MIX) via multilevel-injection wells (IEG-MIW)[J]. Heliyon, 2022, 8(11): e11402. doi: 10.1016/j.heliyon.2022.e11402 [71] EVAN COX. Electrokinetic-enhanced (EK-Enhanced) amendment delivery for remediation of low permeability and heterogeneous materials[R]. 2018. [72] State of California Department of General Services. Removal action completion report electrical resistance heating in source area former mercury cleaners site area[R]. 2018. [73] 谷庆宝. 中国土壤与地下水调查修复装备研究报告[R]. 2022. [74] 李佳璐, 侯盾, 崔双超, 等. 一种用于地下水原位、抽出处理的臭氧高级氧化系统: ZL202122044345.5[P]. 2021-11-23. [75] 程功弼, 赵宝正, 陈骉, 等. 一种纳米级原位多点注药一体式模块化智能设备: ZL201720504859.5[P]. 2017-08-29. [76] 程功弼, 沈秋悦, 徐金旺, 等. 一种强化土壤气相抽提和地下水修复的一体化修复系统: ZL201721880542.8[P]. 2022-10-25. [77] 侯德义. 我国工业场地地下水污染防治十大科技难题[J]. 环境科学研究, 2022, 35(09): 2015-2025. [78] GREEN C, LIAO L, NOLAN B, et al. Regional variability of nitrate fluxes in the unsaturated zone and groundwater, wisconsin, USA[J]. Water Resources Research, 2018, 54(1): 301-322. doi: 10.1002/2017WR022012 [79] YAO Y, MAO F, XIAO Y, et al. Modeling capillary fringe effect on petroleum vapor intrusion from groundwater contamination[J]. Water Research, 2019, 150: 111-119. doi: 10.1016/j.watres.2018.11.038 [80] A. V. P, SAJIKUMAR N. A review on the study of immiscible fluid flow in unsaturated porous media: Modelling and Remediation[J]. Journal of Porous Media, 2019, 22(8): 889-922. [81] HOU D, AL-TABBAA A, O CONNOR D, et al. Sustainable remediation and redevelopment of brownfield sites[J]. Nature Reviews Earth & Environment, 2023, 4(4): 271-286. [82] 中国环保产业协会, 中国环保产业发展状况报告[R]. 2022.