青鳉鱼的行为特征提取研究
Behavior Feature Extraction Based on Medaka
-
摘要: 采用生物行为传感器获取青鳉鱼的行为数据时,青鳉鱼个体差异会导致采集到的原始电信号在时空特性下完全不同。重要的行为特征往往被隐藏在原始信号中,传统的信号处理方法无法实时而有效地提取到这些特征。针对这个问题,观察并记录了暴露实验前后青鳉鱼的行为变化,提出了一种可以高效表征行为特征的直方图统计算法。实验结果表明,该方法能够准确对应人眼观测到的暴露实验前后鱼的行为变化趋势,同时也为后续异常行为识别提供一定的支持和参考。Abstract: When biological behavioral sensors were used to obtain the behavior data of the medaka, the individual differences of the medaka would cause the original electrical signals collected to be completely different under the temporal and spatial characteristics. Important behavioral features are often hidden in the original signal, traditional signal processing methods cannot effectively extract these features in real time. In this view, we observe and record the changes in the behavior of the medaka before and after the exposure experiment, and propose a histogram statistics algorithm, in order to effectively characterize the behavioral characteristics of the medaka. The experimental results show that this method can accurately reflect the changes before and after the exposure experiment observed by human eyes, and it also provides some support and reference for subsequent abnormal behavior identification.
-
Key words:
- medaka /
- behavioral electrical signal /
- feature extraction /
- early warning
-
-
Hill D J, Minsker B S, Amir E. Real-time Bayesian anomaly detection for environmental sensor data[J]. Water Resources Research, 2007, 45(4):450-455 Mckenna S A, Klise K A. Multivariate applications for detecting anomalous water quality[J]. American Society of Civil Engineers, 2006, 247:130 Liu S, Che H, Smith K, et al. Contamination event detection using multiple types of conventional water quality sensors in source water[J]. Environmental Science:Processes & Impacts, 2014, 16(8):2028-2038 黄灿克,刘婷婷,汤晓畏.发光细菌毒性法在饮用水水质评估与预警中的应用[J].环境监控与预警, 2015(3):4-7 Huang C K, Liu T T, Tang X W. Application of the photobacteria toxicity detection method in water quality assessment and early warning of drinking water[J]. Environmental Monitoring and Forewarning, 2015 (3):4-7(in Chinese)
王子健,饶凯锋.突发性水源水质污染的生物监测、预警与应急决策[J].给水排水, 2013, 39(10):1-3 Wang Z J, Rao K F. Biological monitoring, early warning and emergency decision making of sudden water pollution for drinking water source[J]. Water & Wastewater Engineering, 2013, 39(10):1-3(in Chinese)
范鸿杰,周密.新型水质藻类传感器及遥测预警系统研究[J].水电能源科学, 2013(6):192-194 Fan H J, Zhou M. Technical study on new water algal telemetry warning system[J]. Water Resources and Power, 2013 (6):192-194(in Chinese)
李志良.鱼类行为学在水质在线监测与预警中的应用研究[D].济南:山东师范大学, 2008:21-47 L Z L. The research of the water quality on-line warning system by monitoring the behavior change of the fish[D]. Jinan:Shandong Normal University, 2008:21 -47(in Chinese)
周振宇,邵振洲,施智平,等.基于机器视觉的鱼类模式生物在线监测技术方法研究[J].生态毒理学报, 2016, 11(1):217-224 Zhou Z Y, Shao Z Z, Shi Z P, et al. Study on the method of fish model organism on-line monitoring technology based on machine vision[J]. Asian Journal of Ecotoxicology, 2016, 11(1):217-224(in Chinese)
国家环境保护总局,国家质量监督检验检疫总局.地表水环境质量标准[J].中国环保产业, 2002(6):8-9 Gerhardt A, de Bisthoven L J, Mo Z, et al. Short-term responses of Oryzias latipes (Pisces:Adrianichthyidae) and Macrobrachium nipponense (Crustacea:Palaemonidae) to municipal and pharmaceutical waste water in Beijing, China:Survival, behaviour, biochemical biomarkers[J]. Chemosphere, 2002, 47(1):35-47 Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings:Mathematical Physical & Engineering Sciences, 1998, 454(1971):903-995 刘深,张小蓟,牛奕龙,等.基于IMF能量谱的水声信号特征提取与分类[J].计算机工程与应用, 2014, 50(3):203-206 Liu S, Zhang X J, Niu Y L, et al. Feature extraction and classification experiment of underwater acoustic signals based on energy spectrum of IMF[J]. Computer Engineering and Applications, 2014, 50(3):203-206(in Chinese)
叶昊,王桂增,方崇智.小波变换在故障检测中的应用[J].自动化学报, 1997, 23(6):736-741 Ye H, Wang G Z, Fang C Z. Apllication of wavelet transform to fault detection[J]. Acta Automatica Sinica, 1997, 23(6):736-741(in Chinese)
Yang Z, Liu Y, Hou D, et al. Water quality event detection based on multivariate empirical mode decomposition[C]//Gruver B, Chen P. IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2014:2663-2668 Arad J, Housh M, Perelman L, et al. Comparison between fixed thresholds and genetic algorithm methods for water quality event detection[C]//Barton A C T. WDSA 2012:14th Water Distribution Systems Analysis Conference. Adelaide, South Australia:Engineers Australia, 2012:1232-1244 梁鸿,刘勇,饶凯锋,等.水环境中重金属铜暴露下青鳉鱼的行为响应[J].生态毒理学报, 2016, 11(6):345-352 Liang H, Liu Y, Rao K F, et al. The behavioral responses of the medaka under the stress of heavy metal copper in water environment[J]. Asian Journal of Ecotoxicology, 2016, 11(6):345-352(in Chinese)
Blumer A, Ehrenfeucht A, Haussler D, et al. Learnability and the Vapnik-Chervonenkis dimension[J]. Journal of the ACM, 1989, 36(4):929-965 -

计量
- 文章访问数: 3831
- HTML全文浏览数: 3831
- PDF下载数: 80
- 施引文献: 0