低剂量微囊藻毒素MC-LR诱导罗氏沼虾肝胰腺损伤及凋亡

曹清晟, 王丽萍, 杨辉, 魏文志, 张莹莹. 低剂量微囊藻毒素MC-LR诱导罗氏沼虾肝胰腺损伤及凋亡[J]. 生态毒理学报, 2020, 15(2): 171-179. doi: 10.7524/AJE.1673-5897.20190429001
引用本文: 曹清晟, 王丽萍, 杨辉, 魏文志, 张莹莹. 低剂量微囊藻毒素MC-LR诱导罗氏沼虾肝胰腺损伤及凋亡[J]. 生态毒理学报, 2020, 15(2): 171-179. doi: 10.7524/AJE.1673-5897.20190429001
Cao Qingsheng, Wang Liping, Yang Hui, Wei Wenzhi, Zhang Yingying. Low-dose Microcystins MC-LR Induced Hepatopancreas Injury and Apoptosis in Macrobrachium rosenbergii[J]. Asian journal of ecotoxicology, 2020, 15(2): 171-179. doi: 10.7524/AJE.1673-5897.20190429001
Citation: Cao Qingsheng, Wang Liping, Yang Hui, Wei Wenzhi, Zhang Yingying. Low-dose Microcystins MC-LR Induced Hepatopancreas Injury and Apoptosis in Macrobrachium rosenbergii[J]. Asian journal of ecotoxicology, 2020, 15(2): 171-179. doi: 10.7524/AJE.1673-5897.20190429001

低剂量微囊藻毒素MC-LR诱导罗氏沼虾肝胰腺损伤及凋亡

    作者简介: 曹清晟(1999-),男,本科生,研究方向为水生态毒理学,E-mail:caoqingshengzz@163.com
  • 基金项目:

    江苏省自然科学基金青年项目(BK20180901)

  • 中图分类号: X171.5

Low-dose Microcystins MC-LR Induced Hepatopancreas Injury and Apoptosis in Macrobrachium rosenbergii

  • Fund Project:
  • 摘要: 微囊藻毒素(microcystins, MCs)是由水华蓝藻释放出来的一种有生物活性的环庚肽化合物,具有较强的肝毒性,MC-LR是其分布最广的和毒性最强的一个亚型。罗氏沼虾(Macrobrachium rosenbergii)是我国比较重要的一个水产养殖品种,但由于养殖水体富营养化程度比较严重,常常爆发蓝藻水华,给其健康养殖带来较大的威胁,但是关于MCs对罗氏沼虾的毒性机制研究的报道较少。因此,使用环境相关浓度的MC-LR(0.5和5 μg L−1)处理罗氏沼虾1、2和3周,通过组织学观察、免疫组化定位、氧化应激指标测定以及荧光定量PCR技术探究养殖水体中常见浓度MCs对罗氏沼虾的毒害效应及潜在机制。研究结果表明,较高环境相关浓度(5 μg L−1)的MCs会在罗氏沼虾肝胰腺中显著富集,诱导氧化应激,破坏肝胰腺的形态和结构,并且破坏作用随暴露时间延长而加剧,并发生细胞凋亡。而较低浓度的MCs(0.5 μg L−1)对肝胰腺的影响相对较小,但是依然会诱导罗氏沼虾肝胰腺氧化应激,并且在长时间作用下也会给肝胰腺组织带来损伤。上述研究结果证明,环境相关浓度的MCs对罗氏沼虾也有一定的毒害作用,并且毒害作用呈剂量与时间依赖效应。
  • 加载中
  • Merel S, Walker D, Chicana R, et al. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins[J]. Environment International, 2013, 59(3):303-327
    Chen L, Chen J, Zhang X, et al. A review of reproductive toxicity of microcystins[J]. Journal of Hazardous Materials, 2015, 301(15):381-399
    Gupta N, Pant S, Vijayaraghavan R, et al. Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice[J]. Toxicology, 2003, 188(2-3):285-296
    Puddick J, Prinsep M R, Wood S A, et al. High levels of structural diversity observed in microcystins from microcystis CAWBG11 and characterization of six new microcystin congeners[J]. Marine Drugs, 2014, 12(11):5372-5395
    Li X, Cheng R, Shi H, et al. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples[J]. Journal of Hazardous Materials, 2015, 304(1):474-480
    Ye R, Shan K, Gao H L, et al. Spatio-temporal distribution patterns in environmental factors, chlorophyll-a and microcystins in a large shallow lake, Lake Taihu, China[J]. International Journal of Environmental Research and Public Health, 2014, 11(5):5155-5169
    Svircev Z, Drobac D, Tokodi N, et al. Epidemiology of primary liver cancer in Serbia and possible connection with cyanobacterial blooms[J]. Journal of Environmental Science and Health, Part C, 2013, 31(3):181-200
    Wang Q, Xie P, Liang G. Distribution of microcystins in various organs (heart, liver, intestine, gonad, brain, kidney and lung) of Wistar rat via intravenous injection[J]. Toxicon, 2008, 52(6):721-727
    Xie L, Xie P, Guo L, et al. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China[J]. Environmental Toxicology, 2005, 20(3):293-300
    Malbrouck C, Kestemont P. Effects of microcystins on fish[J]. Acta Ecologica Sinica, 2010, 25(1):72-86
    Chakib D, David M, Mélodie M, et al. Oral toxicity of extracts of the microcystin-containing cyanobacterium Planktothrix agardhii to the medaka fish (Oryzias latipes)[J]. Toxicon, 2011, 58(1):112-122
    Rymuszka A, Adaszek L. Cytotoxic effects and changes in cytokine gene expression induced by microcystin-containing extract in fish immune cells-An in vitro and in vivo study[J]. Fish & Shellfish Immunology, 2013, 34(6):1524-1532
    Paulino M G, Rossi P A, Venturini F P, et al. Hepatotoxicity and metabolic effects of cellular extract of cyanobacterium, Radiocystis fernandoi, containing microcystins RR and YR on neotropical fish (Hoplias malabaricus)[J]. Chemosphere, 2017, 175:431-439
    Hagenbuch B, Meier P J. Organic anion transporting polypeptides of the OATP/SLC21 family:Phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties[J]. Pflugers Archiv European Journal of Physiology, 2004, 447(5):653-665
    Chen T, Zhao X, Liu Y, et al. Analysis of immunomodulating nitric oxide, iNOS and cytokines mRNA in mouse macrophages induced by microcystin-LR[J]. Toxicology, 2004, 197(1):67-77
    Zhang J, Zhang H, Chen Y. Sensitive apoptosis induced by microcystins in the crucian carp (Carassius auratus) lymphocytes in vitro[J]. Toxicology in Vitro, 2006, 20(5):560-566
    Weng D, Lu Y, Wei Y, et al. The role of ROS in microcystin-LR-induced hepatocyte apoptosis and liver injury in mice[J]. Toxicology, 2007, 232(1):15-23
    Gaudin J, Huet S, Jarry G, et al. In vivo, DNA damage induced by the cyanotoxin microcystin-LR:Comparison of intra-peritoneal and oral administrations by use of the comet assay[J]. Mutation Research/Genetic Toxicology & Environmental Mutagenesis, 2008, 652(1):65-71
    Zegura B, Gajski G, Straser A, et al. Microcystin-LR induced DNA damage in human peripheral blood lymphocytes[J]. Mutation Research, 2011, 726(2):116-122
    Chen Y, Huang X, Wang J, et al. Effect of pure microcystin-LR on activity and transcript level of immune-related enzymes in the white shrimp (Litopenaeus vannamei)[J]. Ecotoxicology, 2017, 26(5):1-9
    An Z, Yang X, Li Q. Effects of microcystin-leucine-arginine (MC-LR) on growth and energy budget of crayfish (Procambarus clarkii Girard)[J]. Journal of Aquaculture, 2015, 36(10):31-35
    Rohrlack T, Dittmann E, Börner T, et al. Effects of cellbound microcystins on survival and feeding of Daphnia spp.[J]. Applied and Environmental Microbiology, 2001, 67(8):3523-3529
    Yuan J, Gu Z, Zheng Y, et al. Accumulation and detoxification dynamics of microcystin-LR and antioxidant responses in male red swamp crayfish Procambarus clarkii[J]. Aquatic Toxicology, 2016, 177:8-18
    Shi Y, Jiang J, Shan Z, et al. Oxidative stress and histopathological alterations in liver of Cyprinus carpio L. induced by intraperitoneal injection of microcystin-LR[J]. Ecotoxicology, 2015, 24(3):511-519
    Zhao S, Xie P, Chen J, et al. A proteomic study on liver impairment in rat pups induced by maternal microcystinLR exposure[J]. Environmental Pollution, 2016, 212:197-207
    Chen J, Zhong Y M, Zhang H Q, et al. Nitrate reductasedependent nitric oxide production is involved in microcystin-LR-induced oxidative stress in Brassica rapa[J]. Water Air and Soil Pollution, 2012, 223(7):4141-4152
    Ding W X, Shen H M, Ong C N. Critical role of reactive oxygen species formation in microcystin-induced cytoskeleton disruption in primary cultured hepatocytes[J]. Journal of Toxicology and Environmental Health, Part A, 2001, 64(6):507-519
    Wang L L, Yu Q L, Han L, et al. Study on the effect of reactive oxygen species-mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat[J]. Food Chemistry, 2018, 244:394-402
    Clemens M G. Nitric oxide in liver injury[J]. Hepatology, 1999, 30(1):1-5
    Brzuzan P, Wozny M, Ciesielski S, et al. Microcystin-LR induced apoptosis and mRNA expression of p53 and cdkn1a in liver of whitefish (Coregonus lavaretus L.)[J]. Toxicon, 2009, 54(2):170-183
    Lezcano N, Sedán D, Lucotti I, et al. Subchronic microcystin-LR exposure increased hepatic apoptosis and induced compensatory mechanisms in mice[J]. Journal of Biochemical and Molecular Toxicology, 2012, 26(4):131-138
    Martinou J C, Youle R J. Mitochondria in apoptosis:Bcl-2 family members and mitochondrial dynamics[J]. Developmental Cell, 2011, 21(1):92-101
  • 加载中
计量
  • 文章访问数:  3248
  • HTML全文浏览数:  3248
  • PDF下载数:  120
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-04-29
曹清晟, 王丽萍, 杨辉, 魏文志, 张莹莹. 低剂量微囊藻毒素MC-LR诱导罗氏沼虾肝胰腺损伤及凋亡[J]. 生态毒理学报, 2020, 15(2): 171-179. doi: 10.7524/AJE.1673-5897.20190429001
引用本文: 曹清晟, 王丽萍, 杨辉, 魏文志, 张莹莹. 低剂量微囊藻毒素MC-LR诱导罗氏沼虾肝胰腺损伤及凋亡[J]. 生态毒理学报, 2020, 15(2): 171-179. doi: 10.7524/AJE.1673-5897.20190429001
Cao Qingsheng, Wang Liping, Yang Hui, Wei Wenzhi, Zhang Yingying. Low-dose Microcystins MC-LR Induced Hepatopancreas Injury and Apoptosis in Macrobrachium rosenbergii[J]. Asian journal of ecotoxicology, 2020, 15(2): 171-179. doi: 10.7524/AJE.1673-5897.20190429001
Citation: Cao Qingsheng, Wang Liping, Yang Hui, Wei Wenzhi, Zhang Yingying. Low-dose Microcystins MC-LR Induced Hepatopancreas Injury and Apoptosis in Macrobrachium rosenbergii[J]. Asian journal of ecotoxicology, 2020, 15(2): 171-179. doi: 10.7524/AJE.1673-5897.20190429001

低剂量微囊藻毒素MC-LR诱导罗氏沼虾肝胰腺损伤及凋亡

    作者简介: 曹清晟(1999-),男,本科生,研究方向为水生态毒理学,E-mail:caoqingshengzz@163.com
  • 扬州大学动物科学与技术学院, 扬州 225000
基金项目:

江苏省自然科学基金青年项目(BK20180901)

摘要: 微囊藻毒素(microcystins, MCs)是由水华蓝藻释放出来的一种有生物活性的环庚肽化合物,具有较强的肝毒性,MC-LR是其分布最广的和毒性最强的一个亚型。罗氏沼虾(Macrobrachium rosenbergii)是我国比较重要的一个水产养殖品种,但由于养殖水体富营养化程度比较严重,常常爆发蓝藻水华,给其健康养殖带来较大的威胁,但是关于MCs对罗氏沼虾的毒性机制研究的报道较少。因此,使用环境相关浓度的MC-LR(0.5和5 μg L−1)处理罗氏沼虾1、2和3周,通过组织学观察、免疫组化定位、氧化应激指标测定以及荧光定量PCR技术探究养殖水体中常见浓度MCs对罗氏沼虾的毒害效应及潜在机制。研究结果表明,较高环境相关浓度(5 μg L−1)的MCs会在罗氏沼虾肝胰腺中显著富集,诱导氧化应激,破坏肝胰腺的形态和结构,并且破坏作用随暴露时间延长而加剧,并发生细胞凋亡。而较低浓度的MCs(0.5 μg L−1)对肝胰腺的影响相对较小,但是依然会诱导罗氏沼虾肝胰腺氧化应激,并且在长时间作用下也会给肝胰腺组织带来损伤。上述研究结果证明,环境相关浓度的MCs对罗氏沼虾也有一定的毒害作用,并且毒害作用呈剂量与时间依赖效应。

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回