浮游动物DNA宏条形码标志基因比较研究

高旭, 杨江华, 张效伟. 浮游动物DNA宏条形码标志基因比较研究[J]. 生态毒理学报, 2020, 15(2): 61-70. doi: 10.7524/AJE.1673-5897.20190121001
引用本文: 高旭, 杨江华, 张效伟. 浮游动物DNA宏条形码标志基因比较研究[J]. 生态毒理学报, 2020, 15(2): 61-70. doi: 10.7524/AJE.1673-5897.20190121001
Gao Xu, Yang Jianghua, Zhang Xiaowei. Study on the Selection of Marker Genes in Zooplankton DNA Metabarcoding Monitoring[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 61-70. doi: 10.7524/AJE.1673-5897.20190121001
Citation: Gao Xu, Yang Jianghua, Zhang Xiaowei. Study on the Selection of Marker Genes in Zooplankton DNA Metabarcoding Monitoring[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 61-70. doi: 10.7524/AJE.1673-5897.20190121001

浮游动物DNA宏条形码标志基因比较研究

    作者简介: 高旭(1995-),男,硕士研究生,研究方向为环境宏条形码物种多样性,E-mail:gaoxunju@163.com
  • 基金项目:

    国家自然科学基金青年基金资助项目(41807482);江苏省自然科学基金青年基金资助项目(BK20180331);国家重大“水专项”(2018ZX0720801004)

  • 中图分类号: X171.5

Study on the Selection of Marker Genes in Zooplankton DNA Metabarcoding Monitoring

  • Fund Project:
  • 摘要: DNA宏条形码技术作为一种新型生物监测方法,在未来生态环境监测中有巨大的应用潜力。目前,浮游动物DNA宏条形码监测仍在发展阶段,需要首先对其(采样方法、引物选择和数据分析等)进行标准化和调整,然后才能用于常规流域生态监测。其中,如何选择合适的PCR扩增引物是DNA宏条形码生物监测标准化的关键问题之一。本研究比较了COI、18SV9和16S通用引物在浮游动物DNA宏条形码监测中的差异,为初步建立规范化的浮游动物DNA宏条形码监测方法提供技术支撑。结果表明,16S引物对浮游动物具有更好的特异性,其产生的操作分类单元(operational taxonomic unit, OTU)有88.1%属于浮游动物。虽然18SV9引物具有更高的物种覆盖度,不仅能扩增出浮游动物,还能扩增出大量藻类和真菌,但其物种识别敏感性较差,不适合浮游动物物种水平多样性监测。COI引物的浮游动物物种特异性、物种覆盖度和物种识别敏感性都适中,检出的浮游动物物种数量高于18SV9引物和16S引物,更加适合浮游动物DNA宏条形码监测。
  • 加载中
  • Hirai J, Kuriyama M, Ichikawa T, et al. A metagenetic approach for revealing community structure of marine planktonic copepods[J]. Molecular Ecology Resources, 2015, 15(1):68-80
    Ji Y, Ashton L, Pedley S M, et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding[J]. Ecology Letters, 2013, 16(10):1245-1257
    Thomsen P F, Kielgast J, Iversen L L, et al. Monitoring endangered freshwater biodiversity using environmental DNA[J]. Molecular Ecology, 2012, 21(11):2565-2573
    Valentini A, Taberlet P, Miaud C, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding[J]. Molecular Ecology, 2015, 25(4):929-942
    张宛宛,谢玉为,杨江华,等. DNA宏条形码(metabarcoding)技术在浮游植物群落监测研究中的应用[J].生态毒理学报, 2017, 12(1):15-24

    Zhang W W, Xie Y W, Yang J H, et al. Applications and prospects of metabarcoding in environmental monitoring of phytoplankton community[J]. Asian Journal of Ecotoxicology, 2017, 12(1):15-24(in Chinese)

    李飞龙,杨江华,杨雅楠,等.环境DNA宏条形码监测水生态系统变化与健康状态[J].中国环境监测, 2018, 34(6):37-46

    Li F L, Yang J H, Yang Y N, et al. Using environmental DNA metabarcoding to monitor the changes and health status of aquatic ecosystems[J]. Environmental Monitoring in China, 2018, 34(6):37-46(in Chinese)

    孙晶莹,杨江华,张效伟.环境DNA (eDNA)宏条形码技术对枝角类浮游动物物种鉴定及其生物量监测研究[J].生态毒理学报, 2018, 13(5):79-89

    Sun J Y, Yang J H, Zhang X W. Identification and biomass monitoring of zooplankton Cladocera species with eDNA metabarcoding technology[J]. Asian Journal of Ecotoxicology, 2018, 13(5):79-89(in Chinese)

    Yang J, Zhang X, Xie Y, et al. Ecogenomics of zooplankton community reveals ecological threshold of ammonia nitrogen[J]. Environmental Science & Technology, 2017, 51(5):3057-3064
    Yang J, Zhang X, Xie Y, et al. Zooplankton community profiling in a eutrophic freshwater ecosystem-Lake Tai Basin by DNA metabarcoding[J]. Scientific Reports, 2017, 7(1):1773
    Lindeque P K, Parry H E, Harmer R A, et al. Next generation sequencing reveals the hidden diversity of zooplankton assemblages[J]. PLoS One, 2013, 8(11):e81327
    Tang C Q, Leasi F, Obertegger U, et al. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40):16208-16212
    Hebert P D, Ratnasingham S, Dewaard J R. Barcoding animal life:Cytochrome c oxidase subunit 1 divergences among closely related species[J]. Proceedings of the Royal Society B-Biological Sciences, 2003, 270(supply1):S96-S99
    Hebert P D, Cywinska A, Ball S L, et al. Biological identifications through DNA barcodes[J]. Proceedings of the Royal Society B-Biological Sciences, 2003, 270(1512):313-321
    Ratnasingham S, Hebert P D N. BOLD:The barcode of life data system[J]. Molecular Ecology Notes, 2007, 7(3):355-364
    Chain F J J, Brown E A, Macisaac H J, et al. Metabarcoding reveals strong spatial structure and temporal turnover of zooplankton communities among marine and freshwater ports[J]. Diversity and Distributions, 2016, 22(5):493-504
    Clarke L J, Soubrier J, Weyrich L S, et al. Environmental metabarcodes for insects:in silico PCR reveals potential for taxonomic bias[J]. Molecular Ecology Resources, 2014, 14(6):1160-1170
    Piñol J, Mir G, Gomez-Polo P, et al. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods[J]. Molecular Ecology Resources, 2015, 15(4):819-830
    Deagle B E, Jarman S N, Coissac E, et al. DNA metabarcoding and the cytochrome c oxidase subunit Ι marker:Not a perfect match[J]. Biology Letters, 2014, 10(9):399
    Epp L S, Boessenkool S, Bellemain E P, et al. New environmental metabarcodes for analysing soil DNA:Potential for studying past and present ecosystems[J]. Molecular Ecology, 2012, 21(8):1821-1833
    Mohrbeck I, Raupach M J, Arbizu P M, et al. Highthroughput sequencing-The key to rapid biodiversity assessment of marine Metazoa[J]. PLoS One, 2015, 10(10):e0140342
    Pearman J K, Irigoien X. Zooplankton diversity across three Red Sea reefs using pyrosequencing[J]. Frontiers in Marine Science, 2014, 1:27
    Sun C, Zhao Y L, Li H, et al. Unreliable quantitation of species abundance based on high-throughput sequencing data of zooplankton communities[J]. Aquatic Biology, 2015, 24(1):9-15
    Zhan A, Bailey S A, Heath D D, et al. Performance comparison of genetic markers for high-throughput sequencing-based biodiversity assessment in complex communities[J]. Molecular Ecology Resources, 2014, 14(5):1049-1059
    Leray M, Knowlton N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity[J]. Proceedings of the National Academy of Sciences, 2015, 112(7):2076-2081
    Jermiin L S, Crozier R H. The cytochrome b region in the mitochondrial DNA of the ant Tetraponera rufoniger:Sequence divergence in Hymenoptera may be associated with nucleotide content[J]. Journal of Molecular Evolution, 1994, 38(3):282-294
    Carew M E, Pettigrove V J, Metzeling L, et al. Environmental monitoring using next generation sequencing:Rapid identification of macroinvertebrate bioindicator species[J]. Frontiers in Zoology, 2013, 10(1):1-15
    Meusnier I, Singer G A, Landry J, et al. A universal DNA mini-barcode for biodiversity analysis[J]. BMC Genomics, 2008, 9(1):214
    Hirai J, Tsuda A. Metagenetic community analysis of epipelagic planktonic copepods in the tropical and subtropical Pacific[J]. Marine Ecology Progress, 2015, 534:65-78
    Folmer O, Black M, Hoeh W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit Ι from diverse metazoan invertebrates[J]. Molecular Marine Biology & Biotechnology, 1994, 3(5):294-299
    Leray M, Yang J Y, Meyer C P, et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity:Application for characterizing coral reef fish gut contents[J]. Frontiers in Zoology, 2013, 10(1):34
    de Vargas C, Audic S, Henry N, et al. Eukaryotic plankton diversity in the sunlit ocean[J]. Science, 2015, 348(6237):1261605
    Cock P J, Antao T, Chang J T, et al. Biopython:Freely available Python tools for computational molecular biology and bioinformatics[J]. Bioinformatics, 2009, 25(11):1422-1423
    Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5):335-336
    Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16):2194-2200
    Field D, Tiwari B, Booth T, et al. Open software for biologists:From famine to feast[J]. Nature Biotechnology, 2006, 24(7):801-803
    Gentleman R C, Carey V J, Bates D M, et al. Bioconductor:Open software development for computational biology and bioinformatics[J]. Genome Biology, 2004, 5(10):R80
    Edgar R C. UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998
    Amaral-Zettler L A, McCliment E A, Ducklow H W, et al. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes[J]. PLoS One, 2009, 4(7):e6372
    Jarman S N, Mcinnes J C, Faux C, et al. Adélie penguin population diet monitoring by analysis of food DNA in scats[J]. PLoS One, 2013, 8(12):e82227
    Clarke L J, Beard J M, Swadling K M, et al. Effect of marker choice and thermal cycling protocol on zooplankton DNA metabarcoding studies[J]. Ecology & Evolution, 2017, 7(3):87383
    Stefanni S, StankovićD, Borme D, et al. Multi-marker metabarcoding approach to study mesozooplankton at basin scale[J]. Scientific Reports, 2018, 8(1):12085
  • 加载中
计量
  • 文章访问数:  5397
  • HTML全文浏览数:  5397
  • PDF下载数:  193
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-01-21

浮游动物DNA宏条形码标志基因比较研究

    作者简介: 高旭(1995-),男,硕士研究生,研究方向为环境宏条形码物种多样性,E-mail:gaoxunju@163.com
  • 1. 污染控制与资源化研究国家重点实验室, 南京大学环境学院, 南京 210023;
  • 2. 江苏省环境保护化学品安全与健康风险研究重点实验室, 南京 210023
基金项目:

国家自然科学基金青年基金资助项目(41807482);江苏省自然科学基金青年基金资助项目(BK20180331);国家重大“水专项”(2018ZX0720801004)

摘要: DNA宏条形码技术作为一种新型生物监测方法,在未来生态环境监测中有巨大的应用潜力。目前,浮游动物DNA宏条形码监测仍在发展阶段,需要首先对其(采样方法、引物选择和数据分析等)进行标准化和调整,然后才能用于常规流域生态监测。其中,如何选择合适的PCR扩增引物是DNA宏条形码生物监测标准化的关键问题之一。本研究比较了COI、18SV9和16S通用引物在浮游动物DNA宏条形码监测中的差异,为初步建立规范化的浮游动物DNA宏条形码监测方法提供技术支撑。结果表明,16S引物对浮游动物具有更好的特异性,其产生的操作分类单元(operational taxonomic unit, OTU)有88.1%属于浮游动物。虽然18SV9引物具有更高的物种覆盖度,不仅能扩增出浮游动物,还能扩增出大量藻类和真菌,但其物种识别敏感性较差,不适合浮游动物物种水平多样性监测。COI引物的浮游动物物种特异性、物种覆盖度和物种识别敏感性都适中,检出的浮游动物物种数量高于18SV9引物和16S引物,更加适合浮游动物DNA宏条形码监测。

English Abstract

参考文献 (41)

目录

/

返回文章
返回