浮游动物DNA宏条形码标志基因比较研究
Study on the Selection of Marker Genes in Zooplankton DNA Metabarcoding Monitoring
-
摘要: DNA宏条形码技术作为一种新型生物监测方法,在未来生态环境监测中有巨大的应用潜力。目前,浮游动物DNA宏条形码监测仍在发展阶段,需要首先对其(采样方法、引物选择和数据分析等)进行标准化和调整,然后才能用于常规流域生态监测。其中,如何选择合适的PCR扩增引物是DNA宏条形码生物监测标准化的关键问题之一。本研究比较了COI、18SV9和16S通用引物在浮游动物DNA宏条形码监测中的差异,为初步建立规范化的浮游动物DNA宏条形码监测方法提供技术支撑。结果表明,16S引物对浮游动物具有更好的特异性,其产生的操作分类单元(operational taxonomic unit, OTU)有88.1%属于浮游动物。虽然18SV9引物具有更高的物种覆盖度,不仅能扩增出浮游动物,还能扩增出大量藻类和真菌,但其物种识别敏感性较差,不适合浮游动物物种水平多样性监测。COI引物的浮游动物物种特异性、物种覆盖度和物种识别敏感性都适中,检出的浮游动物物种数量高于18SV9引物和16S引物,更加适合浮游动物DNA宏条形码监测。Abstract: As a new biomonitoring method, environmental DNA (eDNA) metabarcoding has great potential to be applied in the future environmental monitoring of aquatic ecosystem. To promote its application in the routine biomonitoring, it is urgent to establish standardized methods and technical protocols for eDNA metabarcoding. Selection of suitable PCR primers is one of the key issues in eDNA based biomonitoring. This study evaluated the differences of PCR primers (18SV9, COI, 16S) in zooplankton biodiversity profiling by eDNA metabarcoding, and provided technical details for the establishment of standardized zooplankton monitoring approach. The results showed that the 16S primer had better specificity to zooplankton species, where 88.1% of 16S OTU (operational taxonomic unit) came from zooplankton. Although 18SV9 primer had higher species coverage than COI and 16S (besides zooplankton, a number of algae and fungi species also found), but the species identification sensitivity was lower. COI primers found 92 different zooplankton species, which was the largest number among the 3 pairs of primers. Overall, COI primer is more suitable for the study of zooplankton monitoring due to its moderate specificity to zooplankton species, species coverage and species identification sensitivity.
-
Key words:
- DNA barcoding /
- marker gene /
- biodiversity /
- COI /
- 18S /
- 16S primer
-
-
Hirai J, Kuriyama M, Ichikawa T, et al. A metagenetic approach for revealing community structure of marine planktonic copepods[J]. Molecular Ecology Resources, 2015, 15(1):68-80 Ji Y, Ashton L, Pedley S M, et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding[J]. Ecology Letters, 2013, 16(10):1245-1257 Thomsen P F, Kielgast J, Iversen L L, et al. Monitoring endangered freshwater biodiversity using environmental DNA[J]. Molecular Ecology, 2012, 21(11):2565-2573 Valentini A, Taberlet P, Miaud C, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding[J]. Molecular Ecology, 2015, 25(4):929-942 张宛宛,谢玉为,杨江华,等. DNA宏条形码(metabarcoding)技术在浮游植物群落监测研究中的应用[J].生态毒理学报, 2017, 12(1):15-24 Zhang W W, Xie Y W, Yang J H, et al. Applications and prospects of metabarcoding in environmental monitoring of phytoplankton community[J]. Asian Journal of Ecotoxicology, 2017, 12(1):15-24(in Chinese)
李飞龙,杨江华,杨雅楠,等.环境DNA宏条形码监测水生态系统变化与健康状态[J].中国环境监测, 2018, 34(6):37-46 Li F L, Yang J H, Yang Y N, et al. Using environmental DNA metabarcoding to monitor the changes and health status of aquatic ecosystems[J]. Environmental Monitoring in China, 2018, 34(6):37-46(in Chinese)
孙晶莹,杨江华,张效伟.环境DNA (eDNA)宏条形码技术对枝角类浮游动物物种鉴定及其生物量监测研究[J].生态毒理学报, 2018, 13(5):79-89 Sun J Y, Yang J H, Zhang X W. Identification and biomass monitoring of zooplankton Cladocera species with eDNA metabarcoding technology[J]. Asian Journal of Ecotoxicology, 2018, 13(5):79-89(in Chinese)
Yang J, Zhang X, Xie Y, et al. Ecogenomics of zooplankton community reveals ecological threshold of ammonia nitrogen[J]. Environmental Science & Technology, 2017, 51(5):3057-3064 Yang J, Zhang X, Xie Y, et al. Zooplankton community profiling in a eutrophic freshwater ecosystem-Lake Tai Basin by DNA metabarcoding[J]. Scientific Reports, 2017, 7(1):1773 Lindeque P K, Parry H E, Harmer R A, et al. Next generation sequencing reveals the hidden diversity of zooplankton assemblages[J]. PLoS One, 2013, 8(11):e81327 Tang C Q, Leasi F, Obertegger U, et al. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40):16208-16212 Hebert P D, Ratnasingham S, Dewaard J R. Barcoding animal life:Cytochrome c oxidase subunit 1 divergences among closely related species[J]. Proceedings of the Royal Society B-Biological Sciences, 2003, 270(supply1):S96-S99 Hebert P D, Cywinska A, Ball S L, et al. Biological identifications through DNA barcodes[J]. Proceedings of the Royal Society B-Biological Sciences, 2003, 270(1512):313-321 Ratnasingham S, Hebert P D N. BOLD:The barcode of life data system[J]. Molecular Ecology Notes, 2007, 7(3):355-364 Chain F J J, Brown E A, Macisaac H J, et al. Metabarcoding reveals strong spatial structure and temporal turnover of zooplankton communities among marine and freshwater ports[J]. Diversity and Distributions, 2016, 22(5):493-504 Clarke L J, Soubrier J, Weyrich L S, et al. Environmental metabarcodes for insects:in silico PCR reveals potential for taxonomic bias[J]. Molecular Ecology Resources, 2014, 14(6):1160-1170 Piñol J, Mir G, Gomez-Polo P, et al. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods[J]. Molecular Ecology Resources, 2015, 15(4):819-830 Deagle B E, Jarman S N, Coissac E, et al. DNA metabarcoding and the cytochrome c oxidase subunit Ι marker:Not a perfect match[J]. Biology Letters, 2014, 10(9):399 Epp L S, Boessenkool S, Bellemain E P, et al. New environmental metabarcodes for analysing soil DNA:Potential for studying past and present ecosystems[J]. Molecular Ecology, 2012, 21(8):1821-1833 Mohrbeck I, Raupach M J, Arbizu P M, et al. Highthroughput sequencing-The key to rapid biodiversity assessment of marine Metazoa[J]. PLoS One, 2015, 10(10):e0140342 Pearman J K, Irigoien X. Zooplankton diversity across three Red Sea reefs using pyrosequencing[J]. Frontiers in Marine Science, 2014, 1:27 Sun C, Zhao Y L, Li H, et al. Unreliable quantitation of species abundance based on high-throughput sequencing data of zooplankton communities[J]. Aquatic Biology, 2015, 24(1):9-15 Zhan A, Bailey S A, Heath D D, et al. Performance comparison of genetic markers for high-throughput sequencing-based biodiversity assessment in complex communities[J]. Molecular Ecology Resources, 2014, 14(5):1049-1059 Leray M, Knowlton N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity[J]. Proceedings of the National Academy of Sciences, 2015, 112(7):2076-2081 Jermiin L S, Crozier R H. The cytochrome b region in the mitochondrial DNA of the ant Tetraponera rufoniger:Sequence divergence in Hymenoptera may be associated with nucleotide content[J]. Journal of Molecular Evolution, 1994, 38(3):282-294 Carew M E, Pettigrove V J, Metzeling L, et al. Environmental monitoring using next generation sequencing:Rapid identification of macroinvertebrate bioindicator species[J]. Frontiers in Zoology, 2013, 10(1):1-15 Meusnier I, Singer G A, Landry J, et al. A universal DNA mini-barcode for biodiversity analysis[J]. BMC Genomics, 2008, 9(1):214 Hirai J, Tsuda A. Metagenetic community analysis of epipelagic planktonic copepods in the tropical and subtropical Pacific[J]. Marine Ecology Progress, 2015, 534:65-78 Folmer O, Black M, Hoeh W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit Ι from diverse metazoan invertebrates[J]. Molecular Marine Biology & Biotechnology, 1994, 3(5):294-299 Leray M, Yang J Y, Meyer C P, et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity:Application for characterizing coral reef fish gut contents[J]. Frontiers in Zoology, 2013, 10(1):34 de Vargas C, Audic S, Henry N, et al. Eukaryotic plankton diversity in the sunlit ocean[J]. Science, 2015, 348(6237):1261605 Cock P J, Antao T, Chang J T, et al. Biopython:Freely available Python tools for computational molecular biology and bioinformatics[J]. Bioinformatics, 2009, 25(11):1422-1423 Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5):335-336 Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16):2194-2200 Field D, Tiwari B, Booth T, et al. Open software for biologists:From famine to feast[J]. Nature Biotechnology, 2006, 24(7):801-803 Gentleman R C, Carey V J, Bates D M, et al. Bioconductor:Open software development for computational biology and bioinformatics[J]. Genome Biology, 2004, 5(10):R80 Edgar R C. UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998 Amaral-Zettler L A, McCliment E A, Ducklow H W, et al. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes[J]. PLoS One, 2009, 4(7):e6372 Jarman S N, Mcinnes J C, Faux C, et al. Adélie penguin population diet monitoring by analysis of food DNA in scats[J]. PLoS One, 2013, 8(12):e82227 Clarke L J, Beard J M, Swadling K M, et al. Effect of marker choice and thermal cycling protocol on zooplankton DNA metabarcoding studies[J]. Ecology & Evolution, 2017, 7(3):87383 Stefanni S, StankovićD, Borme D, et al. Multi-marker metabarcoding approach to study mesozooplankton at basin scale[J]. Scientific Reports, 2018, 8(1):12085 -

计量
- 文章访问数: 6391
- HTML全文浏览数: 6391
- PDF下载数: 234
- 施引文献: 0