水蚤分子生态毒理学研究进展

巩宁, 孟紫强, 邵魁双, 孙野青. 水蚤分子生态毒理学研究进展[J]. 生态毒理学报, 2020, 15(2): 11-18. doi: 10.7524/AJE.1673-5897.20190131001
引用本文: 巩宁, 孟紫强, 邵魁双, 孙野青. 水蚤分子生态毒理学研究进展[J]. 生态毒理学报, 2020, 15(2): 11-18. doi: 10.7524/AJE.1673-5897.20190131001
Gong Ning, Meng Ziqiang, Shao Kuishuang, Sun Yeqing. Advances in Ecotoxicogenomics with Water Fleas[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 11-18. doi: 10.7524/AJE.1673-5897.20190131001
Citation: Gong Ning, Meng Ziqiang, Shao Kuishuang, Sun Yeqing. Advances in Ecotoxicogenomics with Water Fleas[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 11-18. doi: 10.7524/AJE.1673-5897.20190131001

水蚤分子生态毒理学研究进展

    作者简介: 巩宁(1975-),女,博士,副教授,硕士生导师,研究方向为海洋生物学、水生毒理学,E-mail:cospar06@dlmu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(41301560);国家重点研发计划资助项目“浒苔着生机理与防控技术(2016YFC1402104)”

  • 中图分类号: X171.5

Advances in Ecotoxicogenomics with Water Fleas

  • Fund Project:
  • 摘要: 水蚤是广泛分布于各类淡水水体中的浮游动物,在水生生态系统中具有重要地位,也是水生毒理学研究中常用的模式生物。近年来,分子毒理学的发展为水蚤生态毒理学研究提供了新的工具和研究思路。本文分别从基因组学、转录组学、蛋白质组学、代谢组学和表观遗传组学方面,综述了不同环境污染物(重金属、农药和杀菌剂等有机污染物、环境激素类化合物、纳米材料和藻毒素等)对水蚤的生态毒理学效应及分子机制,为通过水蚤生态毒理学研究进行环境污染生物标志物筛选及生态风险评估提供参考。
  • 加载中
  • Kim H J, Koedrith P, Seo Y R. Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, Daphnia model organism[J]. International Journal of Molecular Sciences, 2015, 16(6):12261-12287
    Organization for Economic Cooperation and Development (OECD). Guideline for Testing of Chemicals. Daphnia sp., Acute Immobilisation Test. OECD 202[R]. Paris:OECD, 2004
    Organization for Economic Cooperation and Development (OECD). Guidelines for Testing of Chemicals. Daphnia magna Reproduction Test. OECD 211[R]. Paris:OECD, 2012
    Croce R, Cina F, Lombardo A, et al. Aquatic toxicity of several textile dye formulations:Acute and chronic assays with Daphnia magna and Raphidocelis subcapitata[J]. Ecotoxicology and Environmental Safety, 2017, 144:79-87
    Vukov O, Smith D S, McGeer J C. Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach[J]. Aquatic Toxicology, 2016, 170:142-151
    Martins C, Jesus F T, Nogueira A J A. The effects of copper and zinc on survival, growth and reproduction of the cladoceran Daphnia longispina:Introducing new data in an "old" issue[J]. Ecotoxicology, 2017, 26:1157-1169
    Garcia-Reyero N, Poynton H C, Kennedy A J, et al. Biomarker discovery and transcriptomic responses in Daphnia magna exposed to munitions constituents[J]. Environmental Science & Technology, 2009, 43:4188-4193
    Taylor N S, Weber R J M, Southam A D, et al. A new approach to toxicity testing in Daphnia magna:Application of high throughput FT-ICR mass spectrometry metabolomics[J]. Metabolomics, 2009, 5:44-58
    Watanabe H, Kobayashi K, Kato Y, et al. Transcriptome profiling in crustaceans as a tool for ecotoxicogenomics[J]. Cell Biology and Toxicology, 2008, 24:641-647
    胡利腾,夏立萍,武敏敏,等.太平洋真宽水蚤(Eurytemora pacifica) Cu/ZnSOD基因克隆及在重金属胁迫下的表达分析[J].海洋与湖沼, 2018, 49(2):384-394

    Hu L T, Xia L P, Wu M M, et al. Cloning and expression analysis of Cu/Zn SOD gene of Eurytemora pacifica under metal stress[J]. Oceanologia Et Limnologia Sinica, 2018, 49(2):384-394(in Chinese)

    Roncalli V, Cieslak M C, Lenz P H. Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the saxitoxin producing dinoflagellate Alexandrium fundyense[J]. Scientific Report, 2016, 6:25708-25720
    韦晓慧.海洋酸化条件下铜、镉对日本虎斑猛水蚤(Tigriopus japonicus)发育、繁殖和超氧化物歧化酶活性的影响[D].青岛:中国海洋大学, 2013:1-3 Wei X H. Effect of simulated ocean acidification condition and heavy metals of Cu and Cd on the development, reproduction and SOD activity of Tigriopus japonicus[D]. Qingdao:Ocean University of China, 2013:1

    -3(in Chinese)

    Santos E M, Paull G C, van Look K J, et al. Gonadal transcriptome responses and physiological consequences of exposure to estrogen in breeding zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2007, 83:134-142
    Ju Z L, Wells M C, Walter R B. DNA microarray technology in toxicogenomics of aquatic models:Methods and applications[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2007, 145:5-14
    Costigan S L, Werner J, Ouellet J D, et al. Expression profiling and gene ontology analysis in fathead minnow (Pimephales promelas) liver following exposure to pulp and paper mill effluents[J]. Aquatic Toxicology, 2012, 122-123:44-55
    Poynton H C, Varshavsky J R, Chang B, et al. Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity[J]. Environmental Science & Technology, 2007, 41:1044-1050
    Poynton H C, Zuzow R, Loguinov A V, et al. Gene expression profiling in Daphnia magna, part Ⅱ:Validation of a copper specific gene expression signature with effluent from two copper mines in California[J]. Environmental Science & Technology, 2008, 42:6257-6263
    Poynton H C, Lazorchak J M, Impellitteri C A, et al. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles[J]. Environmental Science & Technology, 2012, 46:6288-6296
    Soetaert A, Moens L N, van der Ven K, et al. Molecular impact of propiconazole on Daphnia magna using a reproduction-related cDNA array[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2006, 142:66-76
    Watanabe H, Tatarazako N, Oda S, et al. Analysis of expressed sequence tags of the water flea Daphnia magna[J]. Genome, 2005, 48:606-609
    Heckmann L H, Connon R, Hutchinson T H, et al. Expression of target and reference genes in Daphnia magna exposed to ibuprofen[J]. BMC Genomics, 2006, 7:175
    Olmstead A W, LeBlanc G A. Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna[J]. The Journal of Experimental Zoology, 2002, 293:736-739
    Eads B D, Andrews J, Colbourne J K. Ecological genomics in Daphnia:Stress responses and environmental sex determination[J]. Heredity, 2008, 100(2):184-190
    Jeong S W, Lee S M, Yum S S, et al. Genomic expression responses toward bisphenol-A toxicity in Daphnia magna in terms of reproductive activity[J]. Molecular & Cellular Toxicology, 2013, 9:149-158
    Ansorge W J. Next-generation DNA sequencing techniques[J]. New Biotechnology, 2009, 25(4):195-203
    Li Z, Li W, Zha J, et al. Transcriptome analysis reveals benzotriazole ultraviolet stabilizers regulate networks related to inflammation in juvenile zebrafish (Danio rerio) brain[J]. Environmental Toxicology, 2019, 34(2):112-122
    Jackman K W, Veldhoen N, Miliano R C, et al. Transcriptomics investigation of thyroid hormone disruption in the olfactory system of the Rana[Lithobates] catesbeiana tadpole[J]. Aquatic Toxicology, 2018, 202:46-56
    Yadetie F, Zhang X, Hanna E M, et al. RNA-Seq analysis of transcriptome responses in Atlantic cod (Gadus morhua) precision-cut liver slices exposed to benzo[a]pyrene and 17α-ethynylestradiol[J]. Aquatic Toxicology, 2018, 201:174-186
    Colli-Dula R C, Fang X, Moraga-Amador D, et al. Transcriptome analysis reveals novel insights into the response of low-dose benzo (a) pyrene exposure in male tilapia[J]. Aquatic Toxicology, 2018, 201:162-173
    Beauvais-Flück R, Slaveykova V I, Cosio C. Effects of two-hour exposure to environmental and high concentrations of methylmercury on the transcriptome of the macrophyte Elodea nuttallii[J]. Aquatic Toxicology, 2018, 194:103-111
    Orsini L, Gilbert D, Podicheti R, et al. Daphnia magna transcriptome by RNA-Seq across 12 environmental stressors[J]. Scientific Data, 2017, 31(4):170006
    Russo C, Isidori M, Deaver J A, et al. Toxicogenomic responses of low level anticancer drug exposures in Daphnia magna[J]. Aquatic Toxicology, 2018, 203:45-50
    Schwarzenberger A, Sadler T, Motameny S, et al. Deciphering the genetic basis of microcystin tolerance[J]. BMC Genomics, 2014, 15:776-784
    Le T H, Lim E S, Hong N H, et al. Proteomic analysis in Daphnia magna exposed to As (Ⅲ), As (Ⅴ) and Cd heavy metals and their binary mixtures for screening potential biomarkers[J]. Chemosphere, 2013, 93:2341-2348
    Rainville L C, Carolan D, Varela A C, et al. Proteomic evaluation of citrate-coated silver nanoparticles toxicity in Daphnia magna[J]. Analyst, 2014, 7:1678-1686
    Schwarzenberger A, Zitt A, Kroth P, et al. Gene expression and activity of digestive proteases in Daphnia:Effects of cyanobacterial protease inhibitors[J]. BMC Physiology, 2010, 10:6
    Taylor N S, Weber R J M, Southam A D, et al. A new approach to toxicity testing in Daphnia magna:Application of high throughput FT-ICR mass spectrometry metabolomics[J]. Metabolomics, 2009, 5:44-58
    Taylor N S, Weber R J, White T A, et al. Discriminating between different acute chemical toxicities via changes in the Daphnid metabolome[J]. Toxicology Sciences, 2010, 118:307-317
    Poynton H C, Taylor N S, Hicks J, et al. Metabolomics of microliter hemolymph samples enables an improved understanding of the combined metabolic and transcriptional responses of Daphnia magna to cadmium[J]. Environmental Science & Technology, 2011, 45:3710-3717
    Nagato E G, D'eon J C, Lankadurai B P, et al. H-1 NMR-based metabolomics investigation of Daphnia magna responses to sub-lethal exposure to arsenic, copper and lithium[J]. Chemosphere, 2013, 93:331-337
    Taylor N S, Gavin A, Viant M R. Metabolomics discovers early-response metabolic biomarkers that can predict chronic reproductive fitness in individual Daphnia magna[J]. Metabolites, 2018, 8(3):42
    Vandegehuchte M B, Lemière F, Vanhaecke L, et al. Direct and transgenerational impact on Daphnia magna of chemicals with a known effect on DNA methylation[J]. Comparative Biochemistry Physiology Part C:Toxicology & Pharmacology, 2010, 151:278-285
    Vandegehuchte M B, De Coninck D, Vandenbrouck T, et al. Gene transcription profiles, global DNA methylation and potential transgenerational epigenetic effects related to Zn exposure history in Daphnia magna[J]. Environmental Pollution, 2010, 158(10):3323-3329
    Vandegehuchte M B, Lemière F, Janssen C R. Quantitative DNA-methylation in Daphnia magna and effects of multigeneration Zn exposure[J]. Comparative Biochemistry and Physiology. Part C:Toxicology & Pharmacology, 2009, 150(3):343-348
  • 加载中
计量
  • 文章访问数:  4921
  • HTML全文浏览数:  4921
  • PDF下载数:  189
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-01-31

水蚤分子生态毒理学研究进展

    作者简介: 巩宁(1975-),女,博士,副教授,硕士生导师,研究方向为海洋生物学、水生毒理学,E-mail:cospar06@dlmu.edu.cn
  • 1. 大连海事大学环境科学与工程学院, 环境系统生物学研究所, 大连 116024;
  • 2. 山西大学环境科学研究所, 山西大学环境医学与毒理学研究所, 太原 030006;
  • 3. 国家海洋环境监测中心, 大连 116023
基金项目:

国家自然科学基金资助项目(41301560);国家重点研发计划资助项目“浒苔着生机理与防控技术(2016YFC1402104)”

摘要: 水蚤是广泛分布于各类淡水水体中的浮游动物,在水生生态系统中具有重要地位,也是水生毒理学研究中常用的模式生物。近年来,分子毒理学的发展为水蚤生态毒理学研究提供了新的工具和研究思路。本文分别从基因组学、转录组学、蛋白质组学、代谢组学和表观遗传组学方面,综述了不同环境污染物(重金属、农药和杀菌剂等有机污染物、环境激素类化合物、纳米材料和藻毒素等)对水蚤的生态毒理学效应及分子机制,为通过水蚤生态毒理学研究进行环境污染生物标志物筛选及生态风险评估提供参考。

English Abstract

参考文献 (44)

目录

/

返回文章
返回