几类常见污染物对斑马鱼运动影响的研究进展

何锦, 薛永来, 周磊, 崔雯, 高璐, 杜道林. 几类常见污染物对斑马鱼运动影响的研究进展[J]. 生态毒理学报, 2020, 15(2): 19-28. doi: 10.7524/AJE.1673-5897.20190228003
引用本文: 何锦, 薛永来, 周磊, 崔雯, 高璐, 杜道林. 几类常见污染物对斑马鱼运动影响的研究进展[J]. 生态毒理学报, 2020, 15(2): 19-28. doi: 10.7524/AJE.1673-5897.20190228003
He Jin, Xue Yonglai, Zhou Lei, Cui Wen, Gao Lu, Du Daolin. Research Advances in the Effects of Several Common Pollutants on Zebrafish Movement[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 19-28. doi: 10.7524/AJE.1673-5897.20190228003
Citation: He Jin, Xue Yonglai, Zhou Lei, Cui Wen, Gao Lu, Du Daolin. Research Advances in the Effects of Several Common Pollutants on Zebrafish Movement[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 19-28. doi: 10.7524/AJE.1673-5897.20190228003

几类常见污染物对斑马鱼运动影响的研究进展

    作者简介: 何锦(1995-),男,硕士研究生,研究方向为生态毒理学,E-mail:821053378@qq.com
  • 基金项目:

    国家自然科学基金资助项目(31100379,31601380);江苏大学高级人才基金资助项目(10JGD056)

  • 中图分类号: X171.5

Research Advances in the Effects of Several Common Pollutants on Zebrafish Movement

  • Fund Project:
  • 摘要: 随着工农业的快速发展和人们生活水平的提高,排放到环境中的污染物种类及数量正在急剧上升,引发了日益严峻的环境问题。环境污染物对生物体内的各项生理活动也产生着深远的影响。为探究污染物对斑马鱼运动系统的影响,本文就斑马鱼运动发生的调控机理以及不同种类的环境污染物对斑马鱼运动行为系统干扰的研究进展进行了综合阐述,归纳了各类污染物对斑马鱼运动神经的损伤效应,在分子水平上探讨了其可能的作用机制,并且展望了环境污染物对斑马鱼运动神经毒性的未来研究方向。
  • 加载中
  • Puls I, Jonnakuty C, Lamonte B H, et al. Mutant dynactin in motor neuron disease[J]. Nature Genetics, 2003, 33(4):455-456
    任宗明,李志良,饶凯锋,等.氰戊菊酯和氯化镉暴露下日本青鳉的行为反应差异[J].生态毒理学报, 2008, 3(6):563-569

    Ren Z M, Li Z L, Rao K F, et al.The differences of the behavioral responses of Japanese medaka (Oryzias latipes) in the exposure of fenvalerate and cadmium chloride[J]. Asian Journal of Ecotoxicology, 2008, 3(6):563-569(in Chinese)

    张融,郑宏远,李录,等.一种计量青鳉鱼胸鳍和尾鳍摆动频率和幅值的计算机视觉算法[J].生态毒理学报, 2015, 10(4):154-161

    Zhang R, Zheng H Y, Li L, et al. A computer vision algorithm which was used for measuring the oscillation frequency of the Japanese medaka's pectoral fin and caudal fin[J]. Asian Journal of Ecotoxicology, 2015, 10(4):154-161(in Chinese)

    Wang D, Xing X. Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans[J]. Journal of Environmental Sciences, 2008, 20(9):1132-1137
    Nwani C D, Ivoke N, Ugwu D O, et al. Investigation on acute toxicity and behavioral changes in a freshwater African catfish, Clarias gariepinus (Burchell, 1822), exposed to organophosphorous pesticide, termifos[J]. Pakistan Journal of Zoology, 2013, 45(4):959-965
    Coryslechta D A, Thompson T. Behavioral toxicity of chronic postweaning lead exposure in the rat[J]. Toxicology & Applied Pharmacology, 1979, 47(1):151-159
    Rice N C, Rauscher N A, Langston J L, et al. Behavioral toxicity of sodium cyanide following oral ingestion in rats:Dose-dependent onset, severity, survival, and recovery[J]. Food & Chemical Toxicology, 2018, 114:145-154
    Sommers F, Mudrock E, Labenia J, et al. Effects of salinity on olfactory toxicity and behavioral responses of juvenile salmonids from copper[J]. Aquatic Toxicology, 2016, 175:260-268
    高小辉,杨峰峰,何圣兵.水质的生物毒性检测方法[J].净水技术, 2012, 31(4):49-54

    Gao X H, Yang F F, He S B. Testingmethods of biological toxicity detection for water quality[J]. Water Purification Technology, 2012, 31(4):49-54(in Chinese)

    Ensebach U, Nagel R. Toxicity of complex chemical mixtures:Acute and long-term effects on different life stage of zebrafish[J]. Ecotoxicological and Environmental Safety, 1995, 30(2):151-157
    景欣悦,康维钧,张宏伟.环境污染物的生物测试方法[J].国外医学:卫生学分册, 2005, 32(3):167-170

    Jing X Y, Kang W J, Zhang H W. Biological test method for environmental pollutants[J]. Foreign Medical Sciences:Section of Hygiene, 2005, 32(3):167-170(in Chinese)

    Barcellos H H A, Koakoski G, Chaulet F, et al. The effects of auditory enrichment on zebrafish behavior and physiology[J]. PeerJ, 2018, 6(1):e5162
    Fraser T W K, Khezri A, Lewandowska-Sabat A M, et al. Endocrine disruptors affect larval zebrafish behavior:Testing potential mechanisms and comparisons of behavioral sensitivity to alternative biomarkers[J]. Aquatic Toxicology, 2017, 193:128-135
    Antonia T, Aleka T, Michail P. Acute exposure to fluoxetine alters aggressive behavior of zebrafish and expression of genes involved in serotonergic system regulation[J]. Frontiers in Neuroscience, 2017, 11:223
    Velki M, Paolo C D, Nelles J, et al. Diuron and diazinon alter the behavior of zebrafish embryos and larvae in the absence of acute toxicity[J]. Chemosphere, 2017, 180:65-76
    Pieróg M, Guz L, Doboszewska U, et al. Effects of alprazolam treatment on anxiety-like behavior induced by color stimulation in adult zebrafish[J]. Progress in NeuroPsychopharmacology and Biological Psychiatry, 2018, 82:297-306
    Israr M, Sahi S V, Jain J. Cadmium accumulation and antioxdative response in the Sesbanla drummondii Callus[J]. Archives of Enviromental Contamination and Toxicology, 2006, 50(1):121-127
    Chen J, Tian L, Lei L, et al. Development and behavior alterations in zebrafish embryonically exposed to valproic acid (VPA):Animal model of autism[J]. Neurotoxicology & Teratology, 2018, 66:8-16
    Liu J, Sun L, Zhang H, et al. Response mechanisms to joint exposure of triclosan and its chlorinated derivatives on zebrafish (Danio rerio) behavior[J]. Chemosphere, 2018, 193:820-832
    Haesemeyer M, Robson D N, Li J M, et al. A Brain-wide circuit model of heat-evoked swimming behavior in larval zebrafish[J]. Neuron, 2018, 98(4):817-831
    Du Y, Guo Q, Shan M, et al. Spatial and temporal distribution of dopaminergic neurons during development in zebrafish[J]. Frontiers in Neuroanatomy, 2016, 10:115-120
    Rink E, Wullimann M F. Connections of the ventral telencephalon and tyrosine hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an ascending dopaminergic system in a teleost[J]. Brain Research Bulletin, 2002, 57(3-4):385-397
    Rink E, Wullimann M F. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum)[J]. Brain Research, 2001, 889(1-2):316-330
    Yao L, Peng S X, Xu Y D, et al. Unexpected neuroprotective effects of loganin on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity and cell death in zebrafish[J]. Journal of Cellular Biochemistry, 2017, 118(3):615-628
    李伟.多巴胺及其受体的研究现状[J].中国现代神经疾病杂志, 2011, 11(1):104-106

    Li W. The research status of dopamine and its receptor ligands[J]. Chinese Journal of Contemporary Neurology and Neurosurgery, 2011, 11(1):104-106(in Chinese)

    万鹏,金清华.多巴胺及其受体在中枢神经系统的作用研究进展[J].武汉大学学报, 2017, 38(1):169-172

    Wan P, Jin Q H. Advances in research on the role of dopamine and its receptors in the central nervous system[J]. Journal of Wuhan University, 2017, 38(1):169-172(in Chinese)

    熊龙滨,温冬香,柏家祥,等.多巴胺及其受体对骨代谢的影响[J].现代医学与健康研究电子杂志, 2018, 2(20):188-190

    Xiong L B, Wen D X, Bai J X, et al. Effects of dopamine and its receptors on bone metabolism[J]. Modern Medicine and Health Research, 2018, 2(20):188-190(in Chinese)

    王炳蔚,杨晓宁,张辰雨,等.纹状体神经通路与运动调控[J].生理科学进展, 2016, 47(4):241-248

    Wang B W, Yang X N, Zhang C Y, et al. Movement control of striatum neural pathway[J]. Progress in Physiological Sciences, 2016, 47(4):241-248(in Chinese)

    邓红兵,张开镐,郑继旺.中脑-边缘多巴胺系统在奖赏效应中的作用[J].中国药物依赖性杂志, 1994(2):70-73 Deng H B, Zhang K G, Zheng J W. The role of the midbrain-edge dopamine system in the reward effect[J]. Chinese Journal of Drug Dependence, 1994

    (2):70-73(in Chinese)

    Blesa J, Trigo-Damas I, Quiroga-Varela A, et al. Oxidative stress and Parkinson's disease[J]. Frontiers in Neuroanatomy, 2015, 9:85-91
    Beck M A. Selenium and host defence towards viruses[J]. Proceedings of the Nutrition Society, 1999, 58(3):707-711
    Moscovitz O, Ben-Nissan G, Fainer I, et al. The Parkinson's-associated protein DJ-1 regulates the 20S proteasome[J]. Nature Communications, 2015, 6:6609-6621
    Barcia C, Barreiro A F, Poza M, et al. Parkinson's disease and inflammatory changes[J]. Neurotoxicity Research, 2003, 5(6):411-417
    Doorn K J, Goudriaan A, Blits-Huizinga C, et al. Increased amoeboid microglial density in the olfactory bulb of Parkinson's and Alzheimer's patients[J]. Brain Pathology, 2013, 24(2):152-165
    Zhang H, Duan C, Yang H, et al. Defective autophagy in Parkinson's disease:Lessons from genetics[J]. Molecular Neurobiology, 2015, 51(1):89-104
    Hu H I, Chang H H, Sun D S. Differential regulation of caspase-2 in MPP+-induced apoptosis in primary cortical neurons[J]. Experimental Cell Research, 2015, 332(1):60-66
    Jing H R, Wang S X, Wang M, et al. Isobavachalcone attenuates MPTP-induced Parkinson's disease in mice by inhibition of microglial activation through NF-κB pathway[J]. PLoS One, 2017, 12(1):e0169560
    Twig G, Elorza A, Molina A J A, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy[J]. The EMBO Journal, 2008, 27(2):433-446
    Twig G, Hyde B, Shirihai O S. Mitochondrial fusion, fission and autophagy as a quality control axis:The bioenergetic view[J]. Biochimica et Biophysica Acta (BBA)/Bioenergetics, 2008, 1777(9):1092-1097
    Baluchnejadmojarad T, Rabiee N, Zabihnejad S, et al. Ellagic acid exerts protective effect in intrastriatal 6-hydroxydopamine rat model of Parkinson's disease:Possible involvement of ERβ/Nrf2/HO-1 signaling[J]. Brain Research, 2017, 1662:23-30
    李旭玲,吴德生,洪文旭,等.纳米SiO2颗粒对斑马鱼行为变化的影响[J].癌变·畸变·突变, 2015, 27(6):467-471

    Li X L, Wu D S, Hong W X, et al. Effects of nano-SiO2 particles on zebrafish behavior response[J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2015, 27(6):467-471(in Chinese)

    Xue J Y, Li X, Sun M Z, et al. An assessment of the impact of SiO2 nanoparticles of different sizes on the rest/wake behavior and the developmental profile of zebrafish larvae[J]. Small, 2014, 9(18):3161-3168
    贺凯宏,尚楠,陈建平,等.纳米氧化铝对斑马鱼幼鱼早期运动行为的影响[J].生态毒理学报, 2018, 13(3):181-187

    He K H, Shang N, Chen J P, et al. Effects of nano-alumina on motor behaviors of zebrafish larva[J]. Asian Journal of Ecotoxicology, 2018, 13(3):181-187(in Chinese)

    王英才,王树磊,唐剑锋,等.斑马鱼在Cu2+胁迫下运动行为变化研究及其应用[J].人民长江, 2018, 49(21):24-30

    Wang Y C, Wang S L, Tang J F, et al. Study on behavioral variation of zebrafish under stress of Cu2+ and its application on water monitoring and early alarming[J]. Yangtze River, 2018, 49(21):24-30(in Chinese)

    Olivari F A, Hernández P P, Allende M L. Acute copper exposure induces oxidative stress and cell death in lateral line hair cells of zebrafish larvae[J]. Brain Research, 2009, 1244(4):1-12
    Mcneil P L, Boyle D, Henry T B, et al. Effects of metal nanoparticles on the lateral line system and behaviour in early life stages of zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2014, 152:318-323
    Jin Y, Liu Z, Liu F, et al. Embryonic exposure to cadmium (Ⅱ) and chromium (Ⅵ) induce behavioral alterations, oxidative stress and immunotoxicity in zebrafish (Danio rerio)[J]. Neurotoxicology and Teratology, 2015, 48:9-17
    Pan H, Zhang X, Ren B, et al. Toxic assessment of cadmium based on online swimming behavior and the continuous AChE activity in the gill of zebrafish (Danio rerio)[J]. Water, Air & Soil Pollution, 2017, 228(9):355-365
    Silva A S D, Spanevello R, Stefanello N, et al. Influence of Trypanosoma evansi in blood, plasma, and brain cholinesterase of experimentally infected cats[J]. Research in Veterinary Science, 2009, 88(2):281-284
    Chen J P, Shang N, He K H, et al. Influence of aluminum chloride exposure on embryonic development of zebrafish and neurobehavior of juvenile fish[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2017, 35(3):166-178
    谈勇,许梦川,王远,等.铝对斑马鱼幼鱼运动行为的影响及其机制[J].中国药理学与毒理学杂志, 2018, 32(3):208-214

    Tan Y, Xu M C, Wang Y, et al. Effect of aluminum on locomotor activity of zebrafish larvae and its mechanism[J]. Chinese Journal of Pharmacology and Toxicology, 2018, 32(3):208-214(in Chinese)

    Altenhofen S, Wiprich M T, Nery L R, et al. Manganese (Ⅱ) chloride alters behavioral and neurochemical parameters in larvae and adult zebrafish[J]. Aquatic Toxicology, 2017, 182:172-183
    Nabinger D D, Altenhofen S, Bitencourt P E R, et al. Nickel exposure alters behavioral parameters in larval and adult zebrafish[J]. Science of the Total Environment, 2017, 624(1):1623-1633
    Noraini Abu Bakar, Nurul Syafida Asma'Mohd Sata, Nurul Farhana Ramlan, et al. Evaluation of the neurotoxic effects of chronic embryonic exposure with inorganic mercury on motor and anxiety-like responses in zebrafish (Danio rerio) larvae[J]. Neurotoxicology and Teratology, 2017, 59:53-61
    Wang Y, Shen C, Wang C, et al. Maternal and embryonic exposure to the water soluble fraction of crude oil or lead induces behavioral abnormalities in zebrafish (Danio rerio), and the mechanisms involved[J]. Chemosphere, 2018, 191:7-16
    刘在平.氯苯、间甲酚和城市污水斑马鱼胚胎和仔鱼生态毒性效应研究[D].兰州:西北师范大学, 2011:38 Liu Z P. Ecological toxic effects of chlorobenzene, m-cresol and urban sewage on zebrafish embryos and larva[D]. Lanzhou:Northwest Normal University, 2011:38(in Chinese)
    倪芳,周斯芸,张瑛,等.不同浓度的五氯酚对斑马鱼运动行为的影响[J].生态毒理学报, 2013, 8(5):763-771

    Ni F, Zhou S Y, Zhang Y, et al. Concentration-dependent effect of PCP on swimming behavior of zebrafish[J]. Asian Journal of Ecotoxicology, 2013, 8(5):763-771(in Chinese)

    Xia J, Niu C, Pei X. Effects of chronic exposure to nonylphenol on locomotor activity and social behavior in zebrafish (Danio rerio)[J]. Journal of Environmental Sciences, 2010, 22(9):1435-1440
    孙中训,杜娟娟,周绍辉,等.苯酚对斑马鱼的抗氧化酶活性及运动行为的影响[J].化学与生物工程, 2016, 33(12):63-67

    Sun Z X, Du J J, Zhou S H, et al. Effects of phenol on antioxidant enzyme activity and movement behavior of Brachydanio rerio[J]. Chemistry & Bioengineering, 2016, 33(12):63-67(in Chinese)

    Wang X, Dong Q, Chen Y, et al. Bisphenol A affects axonal growth, musculature and motor behavior in developing zebrafish[J]. Aquatic Toxicology, 2013, 142-143(4):104-113
    郭樱子,栾亚楠,周玉玲,等.低剂量氯氟氰菊酯对斑马鱼胚胎运动行为的影响[J].温州医科大学学报, 2016, 46(7):476-481

    Guo Y Z, Luan Y N, Zhou Y L, et al. Effect of low-dose cyhalothrin on motor behavior in zebraifsh embryos[J]. Journal of Wenzhou Medical University, 2016, 46(7):476-481(in Chinese)

    逯南南,宋武昌,王明泉,等.马拉硫磷急性暴露对斑马鱼的行为毒性研究[J].生态毒理学报, 2017, 12(4):249-254

    Lu N N, Song W C, Wang M Q, et al. Behavioral toxicity study of zebrafish under malathion acute exposure[J]. Asian Journal of Ecotoxicology, 2017, 12(4):249-254(in Chinese)

    Wang Z, Pu Y Z, Chen Y J, et al. Influence of dichlorvos on zebrafish behavior[J]. Journal of International Pharmaceutical Research, 2013, 40(3):327-330
    黄毅,张金松,韩小波,等.氯化镉和敌敌畏突发胁迫下斑马鱼的行为差异[J].生态毒理学报, 2012, 7(6):671-676

    Huang Y, Zhang J S, Han X B, et al. Behavioral differences of zebrafish under sudden stress of dichlorvos and cadmium chloride[J]. Asian Journal of Ecotoxicology, 2012, 7(6):671-676(in Chinese)

    Levin E D, Swain H A, Donerly S, et al. Developmental chlorpyrifos effects on hatchling zebrafish swimming behavior[J]. Neurotoxicology and Teratology, 2004, 26(6):719-723
    Bailey J, Oliveri A, Levin E. Chlorpyrifos disrupts social behavior in adult zebrafish[J]. Neurotoxicology and Teratology, 2014, 43:90-94
    Tiedeken J A, Ramsdell J S. DDT Exposure of Zebrafish Embryos Enhances Seizure Susceptibility:Relationship to Fetal p, p'-DDE Burden and Domoic Acid Exposure of California Sea Lions[J]. Environmental Health Perspectives, 2009, 117(1):68-73
    Ton C, Lin Y, Willett C. Zebrafish as a model for developmental neurotoxicity testing[J]. Birth Defects Research, 2006, 76(7):553-567
    逯南南,李汝,宋武昌,等.马拉硫磷和百菌清胁迫下斑马鱼行为变化的研究[J].生态毒理学报, 2016, 11(1):369-374

    Lu N N, Li R, Song W C, et al. Study on behavioral change of zebrafish exposed to malathion and chlorothalonil[J]. Asian Journal of Ecotoxicology, 2016, 11(1):369-374(in Chinese)

    Jin Y, Zhu Z, Wang Y, et al. The fungicide imazalil induces developmental abnormalities and alters locomotor activity during early developmental stages in zebrafish[J]. Chemosphere, 2016, 153:455-461
    Altenhofen S, Nabinger D D. Tebuconazole alters morphological, behavioral and neurochemical parameters in larvae and adult zebrafish (Danio rerio)[J]. Chemosphere, 2017, 180:483-490
    BabićS, BarišićJ, VišićH, et al. Embryotoxic and genotoxic effects of sewage effluents in zebrafish embryo using multiple endpoint testing[J]. Water Research, 2017, 115:9-21
    潘睿捷,黄文平,张斌,等.斑马鱼幼鱼运动行为测试评价饮用水安全[J].生态毒理学报, 2016, 11(4):18-25

    Pan J R, Huang W P, Zhang B, et al. Toxicity assessment of drinking water using zebrafish swimming behavior tests[J]. Asian Journal of Ecotoxicology, 2016, 11(4):18-25(in Chinese)

    Pohl J, Björlenius B, Brodin T, et al. Effects of ozonated sewage effluent on reproduction and behavioral endpoints in zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2018, 200:93-101
  • 加载中
计量
  • 文章访问数:  4052
  • HTML全文浏览数:  4052
  • PDF下载数:  160
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-02-28

几类常见污染物对斑马鱼运动影响的研究进展

    作者简介: 何锦(1995-),男,硕士研究生,研究方向为生态毒理学,E-mail:821053378@qq.com
  • 江苏大学环境与安全工程学院, 镇江 212013
基金项目:

国家自然科学基金资助项目(31100379,31601380);江苏大学高级人才基金资助项目(10JGD056)

摘要: 随着工农业的快速发展和人们生活水平的提高,排放到环境中的污染物种类及数量正在急剧上升,引发了日益严峻的环境问题。环境污染物对生物体内的各项生理活动也产生着深远的影响。为探究污染物对斑马鱼运动系统的影响,本文就斑马鱼运动发生的调控机理以及不同种类的环境污染物对斑马鱼运动行为系统干扰的研究进展进行了综合阐述,归纳了各类污染物对斑马鱼运动神经的损伤效应,在分子水平上探讨了其可能的作用机制,并且展望了环境污染物对斑马鱼运动神经毒性的未来研究方向。

English Abstract

参考文献 (74)

目录

/

返回文章
返回