磁铁矿纳米颗粒与Pb2+复合物对大鼠肾细胞的毒性研究

陈力可, 郭昌胜, 刘淼, 李专, 徐建. 磁铁矿纳米颗粒与Pb2+复合物对大鼠肾细胞的毒性研究[J]. 生态毒理学报, 2020, 15(2): 87-95. doi: 10.7524/AJE.1673-5897.20190228004
引用本文: 陈力可, 郭昌胜, 刘淼, 李专, 徐建. 磁铁矿纳米颗粒与Pb2+复合物对大鼠肾细胞的毒性研究[J]. 生态毒理学报, 2020, 15(2): 87-95. doi: 10.7524/AJE.1673-5897.20190228004
Chen Like, Guo Changsheng, Liu Miao, Li Zhuan, Xu Jian. The Cytotoxic Effects of Magnetite Nanoparticle-Pb2+ Complex on Rat Kidney Cells[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 87-95. doi: 10.7524/AJE.1673-5897.20190228004
Citation: Chen Like, Guo Changsheng, Liu Miao, Li Zhuan, Xu Jian. The Cytotoxic Effects of Magnetite Nanoparticle-Pb2+ Complex on Rat Kidney Cells[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 87-95. doi: 10.7524/AJE.1673-5897.20190228004

磁铁矿纳米颗粒与Pb2+复合物对大鼠肾细胞的毒性研究

    作者简介: 陈力可(1984-),男,博士,研究方向为环境化学,E-mail:Downeychen@163.com
  • 基金项目:

    国家自然科学基金资助项目(51208482)

  • 中图分类号: X171.5

The Cytotoxic Effects of Magnetite Nanoparticle-Pb2+ Complex on Rat Kidney Cells

  • Fund Project:
  • 摘要: 磁铁矿纳米颗粒(magnetite nanoparticles, MNPs)是一种环境友好型吸附剂,广泛应用于废水中Pb2+的处理。目前,有不少关于MNPs毒性的研究,但对MNPs处理Pb2+形成的复合物的毒性却鲜有报道,其复合毒性亟待深入研究。本文以大鼠肾细胞(NRK)作为细胞模型,系统研究不同Pb含量的MNPs-Pb复合物,以及相应浓度的MNPs和Pb2+,对大鼠肾细胞活性、细胞形态和密度的影响,考察细胞对纳米颗粒的摄取以及细胞凋亡的作用机制,评估MNPs-Pb的毒性效应。结果表明,在本实验浓度和暴露时间(12 h)条件下,Pb2+能够显著抑制细胞活性,改变细胞形态,促进细胞凋亡,对细胞有显著的毒性效应,并且呈现剂量相关性;利用MNPs吸附水环境中Pb2+形成的复合物MNPs-Pb对大鼠肾细胞没有显著的毒性作用(P<0.05),MNPs对Pb2+的吸附可能是Pb2+的细胞毒性降低的原因。
  • 加载中
  • Liu B Y, Zhang H L, Tan X, et al. GSPE reduces lead-induced oxidative stress by activating the Nrf2 pathway and suppressing miR153 and GSK-3 beta in rat kidney[J]. Oncotarget, 2017, 8(26):42226-42237
    张晴,张斌,赵静,等.环境相关浓度铅暴露诱导斑马鱼仔鱼神经行为毒性[J].环境化学, 2018, 37(3):445-452

    Zhang Q, Zhang B, Zhao J, et al. Neurobehavioral toxicity of zebrafish larvae caused by lead exposure at environmentally relevant concentrations[J]. Environmental Chemistry, 2018, 37(3):445-452(in Chinese)

    Gidlow D A. Lead toxicity[J]. Occupational Medicine, 2015, 65(5):348-356
    Lopes A C, Peixe T S, Mesas A E, et al. Lead exposure and oxidative stress:A systematic review[J]. Reviews of Environmental Contamination and Toxicology, 2016, 236:193-238
    Jiang B, Lian L N, Xing Y, et al. Advances of magnetic nanoparticles in environmental application:Environmental remediation and (bio) sensors as case studies[J]. Environmental Science and Pollution Research, 2018, 25(31):30863-30879
    Fayazi M. Facile hydrothermal synthesis of magnetic sepiolite clay for removal of Pb (Ⅱ) from aqueous solutions[J]. Analytical and Bioanalytical Chemistry Research, 2019, 6(1):125-136
    何勇田,熊先哲.复合污染研究进展[J].环境科学, 1994, 15(6):79-83

    He Y T, Xiong X Z. Advance in the study on compounded pollutions[J]. Environmental Science, 1994, 15(6):79-83(in Chinese)

    杜佳,王树涛,刘征,等.全氟辛烷磺酸钾(PFOS)和纳米氧化锌(Nano-ZnO)单独与联合暴露对斑马鱼胚胎的氧化损伤和细胞凋亡的影响[J].生态毒理学报, 2015, 10(3):238-247

    Du J, Wang S T, Liu Z, et al. PFOS and ZnO nanoparticles induced oxidative stress and apoptosis in zebrafish (Danio rerio)[J]. Asian Journal of Ecotoxicology, 2015, 10(3):238-247(in Chinese)

    姜文博,刘诣,朱越,等.纳米二氧化钛对小鼠心肌细胞DNA的损伤及叔丁基对苯二酚的拮抗作用[J].复旦学报:医学版, 2015, 42(3):349-354

    Jiang W B, Liu Y, Zhu Y, et al. Nanoparticulate titanium dioxide induce DNA damage of cadiac myocytes in mice and the antagonistic effects of tert-butylhydroquinone[J]. Fudan University Journal of Medical Sciences, 2015, 42(3):349-354(in Chinese)

    官晨雨,侯世达,周洋,等.磁性四氧化三铁纳米颗粒作用于前成骨细胞的生物相容性[J].中国组织工程研究, 2016, 20(38):5684-5690

    Guan C Y, Hou S D, Zhou Y, et al. Biocompatibility of magnetic ferrosoferric oxide nanoparticles in preosteoblasts[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(38):5684-5690(in Chinese)

    Nassar N N. Rapid removal and recovery of Pb (Ⅱ) from wastewater by magnetic nanoadsorbents[J]. Journal of Hazardous Materials, 2010, 184(1):538-546
    Almeida L M, Magno L N, Pereira A C, et al. Toxicity of silver nanoparticles released by Hancornia speciosa (Mangabeira) biomembrane[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 210:329-334
    Delaval M, Wohlleben W, Landsiedel R, et al. Assessment of the oxidative potential of nanoparticles by the cytochrome c assay:Assay improvement and development of a high-throughput method to predict the toxicity of nanoparticles[J]. Archives of Toxicology, 2017, 91(1):163-177
    Dong C D, Tsai M L, Chen C W, et al. Heterogeneous persulfate oxidation of BTEX and MTBE using Fe3O4-CB magnetite composites and the cytotoxicity of degradation products[J]. International Biodeterioration & Biodegradation, 2017, 124:109-118
    Baginskiy I, Lai T C, Cheng L C, et al. Chitosan-modified stable colloidal gold nanostars for the photothermolysis of cancer cells[J]. Journal of Physical Chemistry C, 2013, 117(5):2396-2410
    王青,杨丽燕,刘剑波,等.动态光散射技术用于氟离子的检测[J].高等学校化学学报, 2012, 33(10):2195-2198

    Wang Q, Yang L Y, Liu J B, et al. Dynamic light scattering for fluoride ions detection[J]. Chemical Journal of Chinese Universities, 2012, 33(10):2195-2198(in Chinese)

    Nemethova V, Buliakova B, Mazancova P, et al. Intracellular uptake of magnetite nanoparticles:A focus on physico-chemical characterization and interpretation of in vitro data[J]. Materials Science and Engineering C, 2017, 70:161-168
    Oh N, Park J H. Endocytosis and exocytosis of nanoparticles in mammalian cells[J]. International Journal of Nanomedicine, 2014, 9:51-63
    李专,刘淼,陈明辉,等.纳米四氧化三铁吸附水中六价铬后的复合物对HEK293细胞的毒性研究[J].生态毒理学报, 2018, 13(5):296-304

    Li Z, Liu M, Chen M H, et al. Toxicity of composite of Cr (Ⅵ) adsorbed by magnetite Fe3O4 nanoparticles on HEK293[J]. Asian Journal of Ecotoxicology, 2018, 13(5):296-304(in Chinese)

    Hildebrand H, Kühnel D, Potthoff A, et al. Evaluating the cytotoxicity of palladium magnetite nano-catalysts intended for wastewater treatment[J]. Environmental Pollution, 2010, 158(1):65-73
    Auffan M, Rose J, Proux O, et al. Is there a Trojan-horse effect during magnetic nanoparticles and metalloid cocontamination of human dermal fibroblasts[J]. Environmental Science and Technology, 2012, 46(19):10789-10796
    Tian F, Chen G, Yi P, et al. Fates of Fe3O4 and Fe3O4@SiO 2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques[J]. Biomaterials, 2014, 35(24):6412-6421
    Stacchiotti A, Morandini F, Bettoni F, et al. Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead[J]. Toxicology, 2009, 264(3):215-224
    初炳鑫.凋亡与自噬在铅致大鼠肾小管上皮细胞毒性中的交互作用[D].济南:山东农业大学, 2018:2-4 Chu B X. Interplay between autophagy and apoptosis in lead (Ⅱ)-induced cytotoxicity of primary rat proximal tubular cells[D]. Jinan:Shandong Agricultural University, 2018:2

    -4(in Chinese)

    李丹.没食子酸修饰金、银纳米颗粒的细胞毒性研究[D].长春:吉林大学, 2015:48-49 Li D. Study on the cytotoxicity of gold and silver nanoparticles modified by gallic acid[D]. Changchun:Jilin University, 2015:48

    -49(in Chinese)

    Song S, Tan J, Miao Y, et al. Crosstalk of autophagy and apoptosis:Involvement of the dual role of autophagy under ER stress[J]. Journal of Cellular Physiology, 2017, 232(11):2977-2984
    Nanayakkara S, Senevirathna S T M L D, Karunaratne U, et al. Evidence of tubular damage in the very early stage of chronic kidney disease of uncertain etiology in the North Central Province of Sri Lanka:A cross-sectional study[J]. Environmental Health and Preventive Medicine, 2012, 17(2):109-117
    Babatunji O, Abiola A, Abidemi K, et al. Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases[J]. Pharmaceuticals, 2015, 8(2):151-175
  • 加载中
计量
  • 文章访问数:  2543
  • HTML全文浏览数:  2543
  • PDF下载数:  34
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-02-28

磁铁矿纳米颗粒与Pb2+复合物对大鼠肾细胞的毒性研究

    作者简介: 陈力可(1984-),男,博士,研究方向为环境化学,E-mail:Downeychen@163.com
  • 1. 中国环境科学研究院, 环境健康风险评估与研究中心, 北京 100012;
  • 2. 吉林大学新能源与环境学院, 长春 130012;
  • 3. 吉林省环境监测中心站, 长春 130011
基金项目:

国家自然科学基金资助项目(51208482)

摘要: 磁铁矿纳米颗粒(magnetite nanoparticles, MNPs)是一种环境友好型吸附剂,广泛应用于废水中Pb2+的处理。目前,有不少关于MNPs毒性的研究,但对MNPs处理Pb2+形成的复合物的毒性却鲜有报道,其复合毒性亟待深入研究。本文以大鼠肾细胞(NRK)作为细胞模型,系统研究不同Pb含量的MNPs-Pb复合物,以及相应浓度的MNPs和Pb2+,对大鼠肾细胞活性、细胞形态和密度的影响,考察细胞对纳米颗粒的摄取以及细胞凋亡的作用机制,评估MNPs-Pb的毒性效应。结果表明,在本实验浓度和暴露时间(12 h)条件下,Pb2+能够显著抑制细胞活性,改变细胞形态,促进细胞凋亡,对细胞有显著的毒性效应,并且呈现剂量相关性;利用MNPs吸附水环境中Pb2+形成的复合物MNPs-Pb对大鼠肾细胞没有显著的毒性作用(P<0.05),MNPs对Pb2+的吸附可能是Pb2+的细胞毒性降低的原因。

English Abstract

参考文献 (29)

目录

/

返回文章
返回