苯并[a]芘和1-羟基芘诱导人胚胎干细胞分化心肌细胞ROS、CYP基因表达和DNA损伤

吴彬彬, 晏斌, 胡梅, 陈曦, 梁岩. 苯并[a]芘和1-羟基芘诱导人胚胎干细胞分化心肌细胞ROS、CYP基因表达和DNA损伤[J]. 生态毒理学报, 2020, 15(2): 96-103. doi: 10.7524/AJE.1673-5897.20190527002
引用本文: 吴彬彬, 晏斌, 胡梅, 陈曦, 梁岩. 苯并[a]芘和1-羟基芘诱导人胚胎干细胞分化心肌细胞ROS、CYP基因表达和DNA损伤[J]. 生态毒理学报, 2020, 15(2): 96-103. doi: 10.7524/AJE.1673-5897.20190527002
Wu Binbin, Yan Bin, Hu Mei, Chen Xi, Liang Yan. Benzo[a]pyrene and 1-Hydroxypyrene Induce ROS, CYP Gene Expression and DNA Damage in Human Embryonic Stem Cell Derived Cardiomyocytes[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 96-103. doi: 10.7524/AJE.1673-5897.20190527002
Citation: Wu Binbin, Yan Bin, Hu Mei, Chen Xi, Liang Yan. Benzo[a]pyrene and 1-Hydroxypyrene Induce ROS, CYP Gene Expression and DNA Damage in Human Embryonic Stem Cell Derived Cardiomyocytes[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 96-103. doi: 10.7524/AJE.1673-5897.20190527002

苯并[a]芘和1-羟基芘诱导人胚胎干细胞分化心肌细胞ROS、CYP基因表达和DNA损伤

    作者简介: 吴彬彬(1988-),男,博士研究生,研究方向为环境毒理学,E-mail:bb.wu@siat.ac.cn
  • 基金项目:

    广东省科技计划项目(2016A020214015);电子科技大学科研启动基金资助项目(Y03019023601008022);中国科学院战略性先导科技专项(XDA20060303)

  • 中图分类号: X171.5

Benzo[a]pyrene and 1-Hydroxypyrene Induce ROS, CYP Gene Expression and DNA Damage in Human Embryonic Stem Cell Derived Cardiomyocytes

  • Fund Project:
  • 摘要: 多环芳烃(PAHs)化合物中的苯并[a]芘和PAHs暴露检测标志物1-羟基芘与心脏功能障碍有关,但其生物学机制尚不清楚。为研究苯并[a]芘和1-羟基芘对心脏的毒性作用,基于人胚胎干细胞分化心肌细胞(hESC-CM)研究了苯并[a]芘和1-羟基芘对心肌细胞活性氧(ROS)生成、CYP基因表达和DNA损伤等的影响。结果表明,苯并[a]芘和1-羟基芘对hESC-CM活性无影响,但能显著增强细胞ROS水平,诱导DNA损伤。此外,苯并[a]芘还能诱导细胞线粒体促凋亡基因的表达。研究表明,苯并[a]芘和1-羟基芘能通过诱导氧化应激和DNA损伤事件导致hESC-CM损伤,在一定程度上解释了多环芳烃暴露导致心脏疾病的分子机制。
  • 加载中
  • Burstyn I, Kromhout H, Partanen T, et al. Polycyclic aromatic hydrocarbons and fatal ischemic heart disease[J]. Epidemiology, 2005, 16(6):744-750
    Lee M S, Magari S, Christiani D C. Cardiac autonomic dysfunction from occupational exposure to polycyclic aromatic hydrocarbons[J]. Occupational and Environmental Medicine, 2011, 68(7):474-478
    Huang L, Gao D, Zhang Y, et al. Exposure to low dose benzo[a]pyrene during early life stages causes symptoms similar to cardiac hypertrophy in adult zebrafish[J]. Journal of Hazardous Materials, 2014, 276:377-382
    Huang L, Wang C, Zhang Y, et al. Benzo[a]pyrene exposure influences the cardiac development and the expression of cardiovascular relative genes in zebrafish (Danio rerio) embryos[J]. Chemosphere, 2012, 87(4):369-375
    Ang Y S, Rivas R N, Ribeiro A J S, et al. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis[J]. Cell, 2016, 167(7):1734-1749
    Zhang X, Chen S, Yoo S, et al. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death[J]. Cell, 2008, 135(6):1017-1027
    Pruneda-Álvarez L G, Pérez-Vázquez F J, Ruíz-Vera T, et al. Urinary 1-hydroxypyrene concentration as an exposure biomarker to polycyclic aromatic hydrocarbons (PAHs) in Mexican women from different hot spot scenarios and health risk assessment[J]. Environmental Science and Pollution Research, 2016, 23(7):6816-6825
    Hao J N, Yan B. Determination of urinary 1-hydroxypyrene for biomonitoring of human exposure to polycyclic aromatic hydrocarbons carcinogens by a lanthanidefunctionalized metal-organic framework sensor[J]. Advanced Functional Materials, 2017, 27(6):1603856
    de Oliveira Galvão M F, de Queiroz J D F, de Souza Fernandes Duarte E, et al. Characterization of the particulate matter and relationship between buccal micronucleus and urinary 1-hydroxypyrene levels among cashew nut roasting workers[J]. Environmental Pollution, 2017, 220:659-671
    Ovchinnikova E, Hoes M, Ustyantsev K, et al. Modeling human cardiac hypertrophy in stem cell-derived cardiomyocytes[J]. Stem Cell Reports, 2018, 10(3):794-807
    Sirenko O, Grimm F A, Ryan K R, et al. In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model[J]. Toxicology and Applied Pharmacology, 2017, 322:60-74
    An J, Yin L, Shang Y, et al. The combined effects of BDE47 and BaP on oxidatively generated DNA damage in L02 cells and the possible molecular mechanism[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2011, 721(2):192-198
    Gómez-Mendikute A, Etxeberria A, Olabarrieta I, et al. Oxygen radicals production and actin filament disruption in bivalve haemocytes treated with benzo (a) pyrene[J]. Marine Environmental Research, 2002, 54(3-5):431-436
    Zhu W, Cromie M M, Cai Q, et al. Curcumin and vitamin E protect against adverse effects of benzo[a] pyrene in lung epithelial cells[J]. PLoS One, 2014, 9(3):e92992
    Yuan L, Liu J, Deng H, et al. Benzo[a]pyrene induces autophagic and pyroptotic death simultaneously in HL-7702 human normal liver cells[J]. Journal of Agricultural and Food Chemistry, 2017, 65(44):9763-9773
    Stepnik M, Spryszyńska S, Smok-Pieniazek A, et al. The modulating effect of ATM, ATR, DNA-PK inhibitors on the cytotoxicity and genotoxicity of benzo[a]pyrene in human hepatocellular cancer cell line HepG2[J]. Environmental Toxicology and Pharmacology, 2015, 40(3):988-996
    Wang Y, Zhai W, Wang H, et al. Benzo (a) pyrene promotes A549 cell migration and invasion through up-regulating Twist[J]. Archives of Toxicology, 2015, 89(3):451-458
    Kim S M, Lee H M, Hwang K A, et al. Benzo (a) pyrene induced cell cycle arrest and apoptosis in human choriocarcinoma cancer cells through reactive oxygen speciesinduced endoplasmic reticulum-stress pathway[J]. Food and Chemical Toxicology, 2017, 107:339-348
    Zhang H M, Nie J S, Li X, et al. Characteristic analysis of peripheral blood mononuclear cell apoptosis in coke oven workers[J]. Journal of Occupational Health, 2012, 54(1):44-50
    Yin G, Wang X, Sun Y, et al. Bioaccumulation and oxidative stress in submerged macrophyte Ceratophyllum demersum L. upon exposure to pyrene[J]. Environmental Toxicology, 2008, 23(3):328-336
    Yin Y, Jia J, Guo H Y, et al. Pyrene-stimulated reactive oxygen species generation and oxidative damage in Carassius auratus[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2014, 49(2):162-170
    Shimada T, Takenaka S, Murayama N, et al. Oxidation of pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene by human cytochrome P4502A13[J]. Xenobiotica, 2016, 46(3):1-14
    Zapata-Pérez O, Gold-Bouchot G, Ortega A, et al. Effect of pyrene on hepatic cytochrome P4501A (CYP1A) expression in nile tilapia (Oreochromis niloticus)[J]. Archives of Environmental Contamination and Toxicology, 2002, 42(4):477-485
    Freitas F, Brucker N, Durgante J, et al. Urinary 1-hydroxypyrene is associated with oxidative stress and inflammatory biomarkers in acute myocardial infarction[J]. International Journal of Environmental Research and Public Health, 2014, 11(9):9024-9037
    Chen Y R, Zweier J L. Cardiac mitochondria and reactive oxygen species generation[J]. Circulation Research, 2014, 114(3):524-537
    Giordano F J. Oxygen, oxidative stress, hypoxia, and heart failure[J]. Journal of Clinical Investigation, 2005, 115(3):500-508
    von Harsdorf R, Li P F, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis[J]. Circulation, 1999, 99(22):2934-2941
    Shiizaki K, Kawanishi M, Yagi T. Modulation of benzo[a] pyrene-DNA adduct formation by CYP1 inducer and inhibitor[J]. Genes and Environment, 2017, 39(1):14
    Willis A J, Indra R, Wohak L E, et al. The impact of chemotherapeutic drugs on the CYP1A1-catalysed metabolism of the environmental carcinogen benzo[a]pyrene:Effects in human colorectal HCT116 TP53(+/+), TP53(+/-) and TP53(-/-) cells[J]. Toxicology, 2018, 398-399:1-12
    Bersell K, Choudhury S, Mollova M, et al. Moderate and high amounts of tamoxifen in MHC-MerCreMer mice induce a DNA damage response, leading to heart failure and death[J]. Disease Models & Mechanisms, 2013, 6(6):1459-1469
    Higo T, Naito A T, Sumida T, et al. DNA single-strand break-induced DNA damage response causes heart failure[J]. Nature Communications, 2017, 8:15104
    Minamino T, Komuro I. Vascular cell senescence:Contribution to atherosclerosis[J]. Circulation Research, 2007, 100(1):15-26
    Dong R, Xu X, Li G, et al. Bradykinin inhibits oxidative stress-induced cardiomyocytes senescence via regulating redox state[J]. PLoS One, 2013, 8(10):e77034
  • 加载中
计量
  • 文章访问数:  2572
  • HTML全文浏览数:  2572
  • PDF下载数:  43
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-05-27

苯并[a]芘和1-羟基芘诱导人胚胎干细胞分化心肌细胞ROS、CYP基因表达和DNA损伤

    作者简介: 吴彬彬(1988-),男,博士研究生,研究方向为环境毒理学,E-mail:bb.wu@siat.ac.cn
  • 1. 中国科学院深圳先进技术研究院, 深圳 518055;
  • 2. 中国科学院大学, 北京 100049;
  • 3. 香港大学李嘉诚医学院, 香港;
  • 4. 山东省食品药品检验研究院, 济南 250101;
  • 5. 电子科技大学资源与环境学院, 成都 611731
基金项目:

广东省科技计划项目(2016A020214015);电子科技大学科研启动基金资助项目(Y03019023601008022);中国科学院战略性先导科技专项(XDA20060303)

摘要: 多环芳烃(PAHs)化合物中的苯并[a]芘和PAHs暴露检测标志物1-羟基芘与心脏功能障碍有关,但其生物学机制尚不清楚。为研究苯并[a]芘和1-羟基芘对心脏的毒性作用,基于人胚胎干细胞分化心肌细胞(hESC-CM)研究了苯并[a]芘和1-羟基芘对心肌细胞活性氧(ROS)生成、CYP基因表达和DNA损伤等的影响。结果表明,苯并[a]芘和1-羟基芘对hESC-CM活性无影响,但能显著增强细胞ROS水平,诱导DNA损伤。此外,苯并[a]芘还能诱导细胞线粒体促凋亡基因的表达。研究表明,苯并[a]芘和1-羟基芘能通过诱导氧化应激和DNA损伤事件导致hESC-CM损伤,在一定程度上解释了多环芳烃暴露导致心脏疾病的分子机制。

English Abstract

参考文献 (33)

目录

/

返回文章
返回