华东某铀矿区周边河流表层沉积物的天然放射性评价

郑立莉, 周仲魁, 饶苗苗, 孙占学, 郑仁杰, 肖泽稷. 华东某铀矿区周边河流表层沉积物的天然放射性评价[J]. 生态毒理学报, 2020, 15(2): 260-267. doi: 10.7524/AJE.1673-5897.20190301002
引用本文: 郑立莉, 周仲魁, 饶苗苗, 孙占学, 郑仁杰, 肖泽稷. 华东某铀矿区周边河流表层沉积物的天然放射性评价[J]. 生态毒理学报, 2020, 15(2): 260-267. doi: 10.7524/AJE.1673-5897.20190301002
Zheng Lili, Zhou Zhongkui, Rao Miaomiao, Sun Zhanxue, Zheng Renjie, Xiao Zeji. Natural Radioactivity Evaluation of Surface Sediments of Rivers around a Uranium Mining Area in East China[J]. Asian journal of ecotoxicology, 2020, 15(2): 260-267. doi: 10.7524/AJE.1673-5897.20190301002
Citation: Zheng Lili, Zhou Zhongkui, Rao Miaomiao, Sun Zhanxue, Zheng Renjie, Xiao Zeji. Natural Radioactivity Evaluation of Surface Sediments of Rivers around a Uranium Mining Area in East China[J]. Asian journal of ecotoxicology, 2020, 15(2): 260-267. doi: 10.7524/AJE.1673-5897.20190301002

华东某铀矿区周边河流表层沉积物的天然放射性评价

    作者简介: 郑立莉(1994-),女,硕士,研究方向为流域水生态监测与评价,E-mail:z1078848804@163.com
  • 基金项目:

    江西省自然科学基金资助项目(20142BAB213021);国家自然科学基金资助项目(41662024);江西省教育厅科技计划项目(GJJ13439);江西省研究生创新基金项目(YC2018-S343)

  • 中图分类号: X171.5

Natural Radioactivity Evaluation of Surface Sediments of Rivers around a Uranium Mining Area in East China

  • Fund Project:
  • 摘要: 利用高纯锗γ能谱分析仪测量中国华东某铀矿区附近河流沉积物的放射性核素比活度,计算γ辐射吸收剂量率(D)、有效镭浓度(Raeq)、外照射指数(Hex)、内照射指数(Hin)、年有效剂量当量(AEDE(室内和室外))和年性腺剂量当量(AGDE)等放射性参数,并开展沉积物的放射性危害评估,最后通过Pearson线性系数确定放射性核素比活度之间的相关性。结果表明,河流沉积物中放射性核素238U、226Ra、232Th和40K的平均比活度分别为51.55、37.32、57.63和756.86 Bq kg−1,除226Ra外,其他放射性核素的比活度均高于中国平均值;距离污染区较远或存在河流稀释作用的区域,沉积物的天然放射性核素处于正常水平,作为建筑材料使用时比活度不存在超标;放射性核素238U、226Ra和232Th之间存在显著相关性。
  • 加载中
  • United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR). Exposures from natural radiation sources[R]. New York:UNSCEAR, 2000
    王峰凌,卢新卫,任淑花.渭河陕西段河流沉积物天然放射性研究[J].核电子学与探测技术, 2008, 28(2):422-424

    , 429 Wang F L, Lu X W, Ren S H. Natural radioactivity of sediments from Wei River of Shannxi Province[J]. Nuclear Electronics & Detection Technology, 2008, 28(2):422-424, 429(in Chinese)

    Al-Trabulsy H, Khater A, Habbani F. Radioactivity levels and radiological hazard indices at the Saudi coastline of the Gulf of Aqaba[J]. Radiation Physics and Chemistry, 2011, 80(3):343-348
    Hamideen M S, Sharaf J. Natural radioactivity investigations in soil samples obtained from phosphate hills in the Russaifa region, Jordan[J]. Radiation Physics and Chemistry, 2012, 81(10):1559-1562
    方杰.辐射防护导论[M].北京:原子能出版社, 1991:26-28
    Merten D, Kothe E, Büchel G. Studies on microbial heavy metal retention from uranium mine drainage water with special emphasis on rare earth elements[J]. Mine Water and the Environment, 2004, 23(1):34-43
    Lu Y, Yin W, Huang L, et al. Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City, China[J]. Environmental Geochemistry and Health, 2011, 33(2):93-102
    叶素芬,张珞平,陈伟琪.海洋放射性污染生态风险评价研究进展[J].生态毒理学报, 2016, 11(6):1-11

    Ye S F, Zhang L P, Chen W Q. Progress of ecological risk assessment for marine radioactive pollution[J]. Asian Journal of Ecotoxicology, 2016, 11(6):1-11(in Chinese)

    杜金秋,王震,林武辉,等.放射性核素水环境质量标准研究进展[J].生态毒理学报, 2018, 13(5):27-36

    Du J Q, Wang Z, Lin W H, et al. Research progress of the water quality standards on radionuclides[J]. Asian Journal of Ecotoxicology, 2018, 13(5):27-36(in Chinese)

    Caridi F, Marguccio S, Belvedere A, et al. Measurements of gamma radioactivity in river sediment samples of the Mediterranean Central Basin[J]. American Journal of Condensed Matter Physics, 2015, 5(3):61-68
    Gbadamosi M R, Afolabi T A, Ogunneye A L, et al. Distribution of radionuclides and heavy metals in the bituminous sand deposit in Ogun State, Nigeria-A multi-dimensional pollution, health and radiological risk assessment[J]. Journal of Geochemical Exploration, 2018, 190:187-199
    Bai H, Hu B, Wang C, et al. Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China[J]. Ecotoxicology and Environmental Safety, 2016, 130:185-192
    Pan S, Liu R. Investigation of natural radionuclide contents in soil in China[J]. Radiation Protection, 1992, 12(2):122-142
    Jiang X, Teng A, Xu W, et al. Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea[J]. Marine Pollution Bulletin, 2014, 83(1):366-375
    Pejman A, Bidhendi G N, Ardestani M, et al. A new index for assessing heavy metals contamination in sediments:A case study[J]. Ecological Indicators, 2015, 58:365-373
    Jiang M, Zeng G, Zhang C, et al. Assessment of heavy metal contamination in the surrounding soils and surface sediments in Xiawangang River, Qingshuitang District[J]. PloS One, 2013, 8(8):e71176
    Akcay H, Oguz A, Karapire C. Study of heavy metal pollution and speciation in Buyak Menderes and Gediz River sediments[J]. Water Research, 2003, 37(4):813-822
    Ozmen H, Külahci F, Cukurovali A, et al. Concentrations of heavy metal and radioactivity in surface water and sediment of Hazar Lake (Elaziğ, Turkey)[J]. Chemosphere, 2004, 55(3):401-408
    Bikit I, Slivka J, VeskovićM, et al. Measurement of Danube sediment radioactivity in Serbia and Montenegro using gamma ray spectrometry[J]. Radiation Measurements, 2006, 41(4):477-481
    赵世民,王道玮,李晓铭,等.滇池及其河口沉积物中重金属污染评价[J].环境化学, 2014, 33(2):276-285

    Zhao S M, Wang D W, Li X M, et al. Assessment on heavy metals pollution in surface sediments of Dianchi Lake and its estuaries[J]. Environmental Chemistry, 2014, 33(2):276-285(in Chinese)

    Zhao Q, Zhou L, Zheng X, et al. Study on enzymatic activities and behaviors of heavy metal in sediment-plant at muddy tidal flat in Yangtze Estuary[J]. Environmental Earth Sciences, 2015, 73(7):3207-3216
    Yang Z, Wang Y, Shen Z, et al. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China[J]. Journal of Hazardous Materials, 2009, 166(2-3):1186-1194
    Feng H, Han X, Zhang W, et al. A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization[J]. Marine Pollution Bulletin, 2004, 49(11-12):910-915
    Islam M S, Ahmed M K, Habibullah-Al-Mamun M, et al. Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh[J]. Environmental Earth Sciences, 2015, 73(4):1837-1848
    Lu Z, Liu Z. Pollution characteristics and risk assessment of uranium and heavy metals of agricultural soil around the uranium tailing reservoir in Southern China[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318(2):923-933
    Sroor A, El-Bahi S M, Ahmed F, et al. Natural radioactivity and radon exhalation rate of soil in southern Egypt[J]. Applied Radiation and Isotopes, 2001, 55(6):873-879
    Veiga R, Sanches N, Anjos R, et al. Measurement of natural radioactivity in Brazilian beach sands[J]. Radiation Measurements, 2006, 41(2):189-196
    Beretka J, Matthew P. Natural radioactivity of Australian building materials, industrial wastes and by-products[J]. Health Physics, 1985, 48(1):87-95
    Qureshi A A, Tariq S, Din K U, et al. Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan[J]. Journal of Radiation Research and Applied Sciences, 2014, 7(4):438-447
    United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR). Sources and effects of ionizing radiations[R]. New York:UNSCEAR, 1993
    Ramasamy V, Sundarrajan M, Paramasivam K, et al. Assessment of spatial distribution and radiological hazardous nature of radionuclides in high background radiation area, Kerala, India[J]. Applied Radiation and Isotopes, 2013, 73:21-31
    Kurnaz A, Küçükömeroğ lu B, Keser R, et al. Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey)[J]. Applied Radiation and Isotopes, 2007, 65(11):1281-1289
    Abdi M R, Hassanzadeh S, Kamali M, et al. 238 U, 232 Th, 40 K and 137 Cs activity concentrations along the southern coast of the Caspian Sea, Iran[J]. Marine Pollution Bulletin, 2009, 58(5):658-662
    Xinwei L, Lingqing W, Xiaodan J. Radiometric analysis of Chinese commercial granites[J]. Journal of Radioanalytical and Nuclear Chemistry, 2006, 267(3):669-673
    刘媛媛,张春艳,魏强林,等.铀尾矿库区稻田土中放射性核素的空间分布和放射性水平评价[J].生态毒理学报, 2018, 13(5):305-312

    Liu Y Y, Zhang C Y, Wei Q L, et al. Spatial distribution and radiation evaluation of the radionuclides in paddy soil of the uranium tailings area[J]. Asian Journal of Ecotoxicology, 2018, 13(5):305-312(in Chinese)

    Gulan L, Milenkovic B, Stajic J M, et al. Correlation between radioactivity levels and heavy metal content in the soils of the North Kosovska Mitrovica environment[J]. Environmental Science:Processes & Impacts, 2013, 15(9):1735-1742
    Li F, Fan Z, Xiao P, et al. Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China[J]. Environmental Geology, 2009, 57(8):1815-1823
  • 加载中
计量
  • 文章访问数:  2431
  • HTML全文浏览数:  2431
  • PDF下载数:  40
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-01
郑立莉, 周仲魁, 饶苗苗, 孙占学, 郑仁杰, 肖泽稷. 华东某铀矿区周边河流表层沉积物的天然放射性评价[J]. 生态毒理学报, 2020, 15(2): 260-267. doi: 10.7524/AJE.1673-5897.20190301002
引用本文: 郑立莉, 周仲魁, 饶苗苗, 孙占学, 郑仁杰, 肖泽稷. 华东某铀矿区周边河流表层沉积物的天然放射性评价[J]. 生态毒理学报, 2020, 15(2): 260-267. doi: 10.7524/AJE.1673-5897.20190301002
Zheng Lili, Zhou Zhongkui, Rao Miaomiao, Sun Zhanxue, Zheng Renjie, Xiao Zeji. Natural Radioactivity Evaluation of Surface Sediments of Rivers around a Uranium Mining Area in East China[J]. Asian journal of ecotoxicology, 2020, 15(2): 260-267. doi: 10.7524/AJE.1673-5897.20190301002
Citation: Zheng Lili, Zhou Zhongkui, Rao Miaomiao, Sun Zhanxue, Zheng Renjie, Xiao Zeji. Natural Radioactivity Evaluation of Surface Sediments of Rivers around a Uranium Mining Area in East China[J]. Asian journal of ecotoxicology, 2020, 15(2): 260-267. doi: 10.7524/AJE.1673-5897.20190301002

华东某铀矿区周边河流表层沉积物的天然放射性评价

    作者简介: 郑立莉(1994-),女,硕士,研究方向为流域水生态监测与评价,E-mail:z1078848804@163.com
  • 1. 东华理工大学核资源与环境国家重点实验室, 南昌 330013;
  • 2. 东华理工大学水资源与环境工程学院, 南昌 330013
基金项目:

江西省自然科学基金资助项目(20142BAB213021);国家自然科学基金资助项目(41662024);江西省教育厅科技计划项目(GJJ13439);江西省研究生创新基金项目(YC2018-S343)

摘要: 利用高纯锗γ能谱分析仪测量中国华东某铀矿区附近河流沉积物的放射性核素比活度,计算γ辐射吸收剂量率(D)、有效镭浓度(Raeq)、外照射指数(Hex)、内照射指数(Hin)、年有效剂量当量(AEDE(室内和室外))和年性腺剂量当量(AGDE)等放射性参数,并开展沉积物的放射性危害评估,最后通过Pearson线性系数确定放射性核素比活度之间的相关性。结果表明,河流沉积物中放射性核素238U、226Ra、232Th和40K的平均比活度分别为51.55、37.32、57.63和756.86 Bq kg−1,除226Ra外,其他放射性核素的比活度均高于中国平均值;距离污染区较远或存在河流稀释作用的区域,沉积物的天然放射性核素处于正常水平,作为建筑材料使用时比活度不存在超标;放射性核素238U、226Ra和232Th之间存在显著相关性。

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回