湿地植物水蓼(Polygonum hydropiper L.)对镉的富集特征及生理响应
Accumulation Characteristics and Physiological Responses of the Wetland Plant, Polygonum hydropiper L. to Cadmium
-
摘要: 以人工湿地修复镉污染水体时,植物在镉离子的沉淀、吸收和积累等过程中起着关键作用,但当前报道的镉富集植物种类较少,湿地植物对镉胁迫的生长及生理响应缺乏系统研究,限制了湿地植物在镉污染水体修复中的应用。笔者以常见湿地植物水蓼(Polygonum hydropiper L.)为对象,设置了4个镉处理浓度(0、0.5、1和2 mg L−1),研究了水蓼对镉的富集特征以及生长和生理响应。水蓼根、茎和叶的镉含量(以干重计)随镉处理浓度的增加而升高,处理30 d时,在2 mg L−1处理下分别达到134、47和48 mg kg−1。处理30 d时,在1 mg L−1的镉处理下,水蓼的地上部及地下部富集系数和转运系数最高,地上部和地下部富集系数分别为45.6和111.7,转运系数为0.41。在处理15 d时,水蓼生物量、叶绿素含量和超氧化物歧化酶(SOD)活性在2 mg L−1处理下显著降低。在处理30 d时,水蓼的总生物量在不同镉浓度下无显著差异,但丙二醛(MDA)含量、SOD和过氧化氢酶(CAT)活性在0.5~2 mg L−1镉处理下均显著升高,叶绿素含量下降。这些结果表明,水蓼可以通过提高抗氧化酶活性等机理抵抗镉胁迫产生的氧化伤害,并且水蓼对镉的富集和转运系数较高,具有在镉污染水体修复中应用的潜力。Abstract: In the remediation of constructed wetland for cadmium-contaminated water, the plant plays a key role in the precipitation, absorption and accumulation of cadmium ions. However, due to the lack of the species of cadmium-enriched plants, the growth and physiological responses of wetland plants to cadmium stress were not studied systematically, leading to the limited application of wetland plants in the restoration of water-body polluted by cadmium. We choose Polygonum hydropiper L., a common wetland plant, as the target plant, and study the characteristics of cadmium accumulation, and the growth and physiological responses, with four cadmium concentrations (0, 0.5, 1 and 2 mg L−1). As the cadmium concentration increased, the cadmium contents (based on dry weight) in the roots, stems and leaves increased, being 134, 47 and 48 mg kg−1 at 2 mg L−1 concentration after 30 d treatment. The bioconcentration factor (BCF) and translocation factor (TF) were the highest under 1 mg L−1 concentration after 30 d treatment, where BCF of the shoot and root were 45.6 and 111.7 respectively, and TF was 0.41. At 2 mg L−1 cadmium concentration, the biomass, chlorophyll content and superoxide dismutase (SOD) activity decreased dramatically after 15 d treatment. After 30 d treatment, there was no significant difference in total biomass of Polygonum hydropiper L., but remarkable increase was observed in the malondialdehyde (MDA) content, and the activities of SOD and catalase (CAT), whereas the chlorophyll content declined at 0.5~2 mg L−1 cadmium concentration. It is indicate that Polygonum hydropiper L. can resist the oxidative damage caused by cadmium stress with the improvement of the activities of antioxidant enzymes. Both BCF and TF of cadmium in Polygonum hydropiper L. are high, so it is fair to conclude that Polygonum hydropiper L. possesses high application potentiality in the remediation of cadmium-contaminated water.
-
Dixit S, Dhote S. Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata[J]. Environmental Monitoring & Assessment, 2010, 169(1-4):367-374 Dogan M, Karatas M, Aasim M. Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.:A laboratory study[J]. Ecotoxicology & Environmental Safety, 2017, 148:431-440 Bonanno G, Vymazal J, Cirelli G L. Translocation, accumulation and bioindication of trace elements in wetland plants[J]. Science of the Total Environment, 2018, 631-632:252-261 Huang X, Ho S H, Zhu S, et al. Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in Phragmites australis affected by cadmium stress[J]. Journal of Environmental Management, 2017, 197:448-455 Carmen P S, Carmen H P, María José M S, et al. Metal uptake by wetland plants:Implications for phytoremediation and restoration[J]. Journal of Soils & Sediments, 2017, 17:1384-1393 Chen M, Zhang L L, Tuo Y C, et al. Treatability thresholds for cadmium-contaminated water in the wetland macrophyte Hydrilla verticillata (L.f.) Royle[J]. Ecological Engineering, 2016, 96:178-186 Nagajyoti P C, Lee K D, Sreekanth T V M. Heavy metals, occurrence and toxicity for plants:A review[J]. Environmental Chemistry Letters, 2010, 8(3):199-216 Colzi I, Lastrucci L, Rangoni M, et al. Using Myriophyllum aquaticum (Vell.) Verdc. to remove heavy metals from contaminated water:Better dead or alive?[J]. Journal of Environmental Management, 2018, 213:320-328 Wu Z, Shuai L, Jie Z, et al. Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress[J]. Environmental & Experimental Botany, 2017, 133:1-11 Ozfidan K C, Yildiztugay E, Bahtiyar M, et al. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress[J]. Ecotoxicology and Environmental Safety, 2018, 155:66-75 Zhang S R, Lin H C, Deng L J, et al. Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L.[J]. Ecological Engineering, 2013, 51:133-139 Zhang Z, Rengel Z, Meney K. Cadmium accumulation and translocation in four emergent wetland species[J]. Water Air & Soil Pollution, 2010, 212(1-4):239-249 Ding B Z, Shi G X, Xu Y, et al. Physiological responses of Alternanthera philoxeroides (Mart.) Griseb leaves to cadmium stress[J]. Environmental Pollution, 2007, 147(3):800-803 Arora A, Sairam R K, Srivastava G C. Oxidative stress and antioxidative system in plants[J]. Current Science, 2002, 82:1227-1238 Marchand L, Mench M, Jacob D L, et al. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements:A review[J]. Environmental Pollution, 2010, 158(12):3447-3461 钟珍梅,王义祥,杨冬雪,等. 4种植物对铅、镉和砷污染土壤的修复作用研究[J].农业环境科学学报, 2010, 29(增刊):123-126 Zhong Z M, Wang Y X, Yang D X, et al. Phytoremediation effects of four plants on contaminated soils by heavy metal lead cadmium and arsenic[J]. Journal of AgroEnvironment Science, 2010 , 29(Suppl.):123-126(in Chinese)
刘鸣达,王丽丽,李艳利.镉胁迫下硅对水稻生物量及生理特性的影响[J].中国农学通报, 2010, 26(13):187-190 Liu M D, Wang L L, Li Y L. Effect of Si on biomass and physiological characteristics of rice under Cd stress[J]. Chinese Agricultural Science Bulletin, 2010, 26(13):187-190(in Chinese)
Tang Y T, Qiu R L, Zeng X W, et al. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch[J]. Environmental & Experimental Botany, 2009, 66(1):126-134 Ying R R, Qiu R L, Tang Y T, et al. Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata[J]. Journal of Plant Physiology, 2010, 167(2):81-87 Sun Y B, Zhou Q X, Wang L, et al. Cadmium tolerance and accumulation characteristics of Bidenspilosa L. as a potential Cd-hyperaccumulator[J]. Journal of Hazardous Materials, 2009, 161(2-3):808-814 Arduini I, Masoni A, Mariotti M, et al. Low cadmium application increase miscanthus growth and cadmium translocation[J]. Environmental and Experimental Botany, 2004, 52(2):89-100 李君,葛跃,王明新,等.镉对蓖麻耐性生理及营养元素吸收转运的影响[J].环境科学学报, 2016, 36(8):3081-3087 Li J, Ge Y, Wang M X, et al. Effect of Cd on tolerance physiology, nutrients uptake and translocation in Ricinuscommunis L.[J]. Acta Scientiae Circumstantiae, 2016, 36(8):3081-3087(in Chinese)
刘彩凤,史刚荣,余如刚,等.硅缓解植物镉毒害的生理生态机制[J].生态学报, 2017, 37(23):7799-7810 Liu C F, Shi G R, Yu R G,et al. Eco-physiological mechanisms of silicon-induced alleviation of cadmium toxicity in plants:A review[J]. Acta Ecologica Sinica, 2017, 37(23):7799-7810(in Chinese)
刘俊,廖柏寒,周航,等.镉胁迫下大豆生长发育的生理生态特征[J].生态学报, 2009, 30(2):333-340 Liu J, Liao B H, Zhou H, et al. Main characteristics of physiological-ecological dynamics of soybean during the growth cycle under Cd stress[J]. Acta Ecologica Sinica, 2009, 30(2):333-340(in Chinese)
梅娟,李华,郭翠花. Cd超富集植物修复污染土壤的研究进展[J].能源与节能, 2013(2):80-82 Mie J, Li H, Guo C H. The research progress of Cd-hyperaccumulator in contaminated soil remediation[J]. Energy and Energy Conservation, 2013 (2):80-82(in Chinese)
Wang H, Zhao S C, Xia W J, et al. Effect of cadmium stress on photosynthesis, lipid peroxidation and antioxidant enzyme activities in maize (Zea mays L.) seedlings[J]. Plant Nutrition and Fertilizer Science, 2008, 14(1):36-42 Deng Y, Li D, Huang Y, et al. Physiological response to cadmium stress in kenaf (Hibiscus cannabinus L.) seedlings[J]. Industrial Crops and Products, 2017, 107:453-457 季玉洁,万亚男,王琪,等.不同铁营养状况下根系特征及蒸腾对黄瓜幼苗吸收镉的影响[J].环境科学学报, 2017, 37(5):1939-1946 Ji Y J, Wan Y N, Wang Q, et al. Effects of root characteristics and transpiration on cadmium uptake by cucumber seedlings under varied iron levels[J]. Acta Scientiae Circumstantiae, 2017, 37(5):1939-1946(in Chinese)
陈亚慧,刘晓宇,王明新,等.蓖麻对镉的耐性、积累及与镉亚细胞分布的关系[J].环境科学学报, 2014, 34(9):2440-2446 Chen Y H, Liu X Y, Wang M X, et al. Cadmium tolerance, accumulation and relationship with Cd subcellular distribution in Ricinus communis L.[J]. Acta Scientiae Circumstantiae, 2014, 34(9):2440-2446(in Chinese)
张腾,卢倩云,陈友明,等. 3种镉超富集植物毛状根体系对镉胁迫响应的比较[J].生态毒理学报, 2017, 12(4):367-376 Zhang T, Lu Q Y, Chen Y M, et al. Comparison of responses of three Cd-hyperaccumulator hairy roots system under Cd stress[J]. Asian Journal of Ecotoxicology, 2017, 12(4):367-376(in Chinese)
Romero-Puertas M C, Terrón-Camero L C, Peláez-Vico M Á, et al. Reactive oxygen and nitrogen species as key indicators of plant responses to Cd stress[J]. Environmental and Experimental Botany, 2018. DOI:https://doi.org/10.1016/j.envexpbot.2018.10.012 Chen Q, Lu X, Guo X, et al. Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus[J]. Ecotoxicology & Environmental Safety, 2018, 157:266-275 Susana R G, Mateos N E, Andrades M L. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum[J]. Journal of Hazardous Materials, 2010, 184(1-3):299-307 Gomes M A, Hauserdavis R A, Suzuki M S, et al. Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations[J]. Ecotoxicology and Environmental Safety, 2017, 140:55-64 顾翠花,王懿祥,白尚斌,等.四种园林植物对土壤镉污染的耐受性[J].生态学报, 2015, 35(8):2536-2544 Gu C H, Wang Y X, Bai S B, et al. Tolerance and accumulation of four ornamental species seedlings to soil cadmium contamination[J]. Acta Ecologica Sinica, 2015, 35(8):2536-2544(in Chinese)
马贵.湿地植物芦苇对重金属Cd富集能力的研究[J].化学工程与装备, 2016(9):42-43 Zhang X C, Zhang S R, Xu X X, et al. Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L.[J]. Journal of Hazardous Materials, 2010, 180(1-3):303-308 Chayapan P, Kruatrachue M, Meetam M, et al. Effects of amendments on growth and uptake of Cd and Zn by wetland plants, Typha angustifolia and Colocasia esculenta from contaminated sediments[J]. International Journal of Phytoremediation, 2015, 17(9):7
计量
- 文章访问数: 3157
- HTML全文浏览数: 3157
- PDF下载数: 57
- 施引文献: 0