四溴双酚A和四氯双酚A对非洲爪蛙蝌蚪的毒性效应

牛玥, 朱敏, 刘芃岩, 秦占芬. 四溴双酚A和四氯双酚A对非洲爪蛙蝌蚪的毒性效应[J]. 生态毒理学报, 2020, 15(6): 115-122. doi: 10.7524/AJE.1673-5897.20190529001
引用本文: 牛玥, 朱敏, 刘芃岩, 秦占芬. 四溴双酚A和四氯双酚A对非洲爪蛙蝌蚪的毒性效应[J]. 生态毒理学报, 2020, 15(6): 115-122. doi: 10.7524/AJE.1673-5897.20190529001
Niu Yue, Zhu Min, Liu Pengyan, Qin Zhanfen. Toxic Effects of Tetrabromobisphenol A and Tetrachlorobisphenol A on Xenopus laevis Tadpoles[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 115-122. doi: 10.7524/AJE.1673-5897.20190529001
Citation: Niu Yue, Zhu Min, Liu Pengyan, Qin Zhanfen. Toxic Effects of Tetrabromobisphenol A and Tetrachlorobisphenol A on Xenopus laevis Tadpoles[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 115-122. doi: 10.7524/AJE.1673-5897.20190529001

四溴双酚A和四氯双酚A对非洲爪蛙蝌蚪的毒性效应

    作者简介: 牛玥(1995-),女,硕士,研究方向为毒理学,E-mail:296046855@qq.com
    通讯作者: 秦占芬, E-mail: qinzhanfen@rcees.ac.cn
  • 基金项目:

    国家重点研发计划资助项目(2017YFF0211203);国家自然科学基金面上项目(21876196)

  • 中图分类号: X171.5

Toxic Effects of Tetrabromobisphenol A and Tetrachlorobisphenol A on Xenopus laevis Tadpoles

    Corresponding author: Qin Zhanfen, qinzhanfen@rcees.ac.cn
  • Fund Project:
  • 摘要: 四溴双酚A(tetrabromobisphenol A,TBBPA)和四氯双酚A(tetrachlorobisphenol A,TCBPA)作为阻燃剂被大量生产和使用,其毒性效应受到关注。相对鱼类和哺乳类动物,TBBPA和TCBPA对两栖动物的毒性数据还比较缺乏。本文研究了TBBPA和TCBPA对非洲爪蛙蝌蚪的急性毒性,并比较了二者对氧化应激标记基因和凝血相关基因转录水平的影响。结果表明,TBBPA和TCBPA的48 h半致死浓度分别为4.31 mg·L-1和3.99 mg·L-1;在无蝌蚪死亡浓度下,TBBPA和TCBPA均能显著影响蝌蚪体内典型氧化应激标记基因的表达,其中,对谷胱甘肽转移酶(glutathione transferase)gst基因的影响最显著,TBBPA和TCBPA的效应相近;TBBPA和TCBPA对蝌蚪体内热休克蛋白的转录影响不明显;另外发现,TBBPA和TCBPA可导致蝌蚪产生凝血现象,同时凝血相关基因的转录水平被上调。综上可知,TBBPA和TCBPA对蝌蚪的急性毒性都为中毒,氧化应激效应也接近,但不引起热休克蛋白转录的变化。
  • 加载中
  • Covaci A, Voorspoels S, Abdallah M A, et al. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives[J]. Journal of Chromatography A, 2009, 1216(3):346-363
    Liu K, Li J, Yan S J, et al. A review of status of tetrabromobisphenol A (TBBPA) in China[J]. Chemosphere, 2016, 148:8-20
    Birnbaum L S, Staskal D F. Brominated flame retardants:Cause for concern?[J]. Environmental Health Perspectives, 2004, 112(1):9-17
    Kim U J, Oh J E. Tetrabromobisphenol A and hexabromocyclododecane flame retardants in infant-mother paired serum samples, and their relationships with thyroid hormones and environmental factors[J]. Environmental Pollution, 2014, 184:193-200
    Malkoske T, Tang Y L, Xu W Y, et al. A review of the environmental distribution, fate, and control of tetrabromobisphenol A released from sources[J]. The Science of the Total Environment, 2016, 569-570:1608-1617
    Jakobsson K, Thuresson K, Rylander L, et al. Exposure to polybrominated diphenyl ethers and tetrabromobisphenol A among computer technicians[J]. Chemosphere, 2002, 46(5):709-716
    Morris S, Allchin C R, Zegers B N, et al. Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs[J]. Environmental Science & Technology, 2004, 38(21):5497-5504
    Rodríguez-Gómez R, Jiménez-Díaz I, Zafra-Gómez A, et al. A multiresidue method for the determination of selected endocrine disrupting chemicals in human breast milk based on a simple extraction procedure[J]. Talanta, 2014, 130:561-570
    Chu S G, Haffner G D, Letcher R J. Simultaneous determination of tetrabromobisphenol A, tetrachlorobisphenol A, bisphenol A and other halogenated analogues in sediment and sludge by high performance liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2005, 1097(1-2):25-32
    Liu K, Li J, Yan S J, et al. A review of status of tetrabromobisphenol A (TBBPA) in China[J]. Chemosphere, 2016, 148:8-20
    Yang S W, Wang S R, Liu H L, et al. Tetrabromobisphenol A:Tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China[J]. Environmental Science and Pollution Research International, 2012, 19(9):4090-4096
    Wang X M, Liu J Y, Liu A F, et al. Preparation and evaluation of mesoporous cellular foams coating of solid-phase microextraction fibers by determination of tetrabromobisphenol A, tetrabromobisphenol S and related compounds[J]. Analytica Chimica Acta, 2012, 753:1-7
    Fan Z L, Hu J Y, An W, et al. Detection and occurrence of chlorinated byproducts of bisphenol A, nonylphenol, and estrogens in drinking water of China:Comparison to the parent compounds[J]. Environmental Science & Technology, 2013, 47(19):10841-10850
    US National Institute of Health (US NIH). National Library of Medicine and Toxicology Data Network, 4,4'-Methylenebis(phenol). (2014-04-28). http://chem.sis.nlm.nih.gov/chemid-plus/ProxyServlet?ObjectHandle=DBMaint&actionHandle=default&nextPage=jsp/chemidlite/Result-Screen.jsp&TXTS-UPERLISTID=0000620928
    Hallgren S, Sinjari T, Håkansson H, et al. Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice[J]. Archives of Toxicology, 2001, 75(4):200-208
    Chan W K, Chan K M. Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA[J]. Aquatic Toxicology, 2012, 108:106-111
    巩文静, 朱丽岩, 郝雅, 等. 四溴双酚A对太平洋真宽水蚤的急性毒性及氧化胁迫[J]. 生态毒理学报, 2016, 11(4):232-238

    Gong W J, Zhu L Y, Hao Y, et al. Acute toxicity and oxidative stress of tetrabromobis-phenol A to Eurytemora pacifica[J]. Asian Journal of Ecotoxicology, 2016, 11(4):232-238(in Chinese)

    Hu J, Liang Y, Chen M J, et al. Assessing the toxicity of TBBPA and HBCD by zebrafish embryo toxicity assay and biomarker analysis[J]. Environmental Toxicology, 2009, 24(4):334-342
    Wu S M, Ji G X, Liu J N, et al. TBBPA induces developmental toxicity, oxidative stress, and apoptosis in embryos and zebrafish larvae (Danio rerio)[J]. Environmental Toxicology, 2016, 31(10):1241-1249
    Finkel T, Holbrook N J. Oxidants, oxidative stress and the biology of ageing[J]. Nature, 2000, 408(6809):239-247
    Lou Q Q, Cao S, Xu W, et al. Molecular characterization and mRNA expression of ribosomal protein L8 in Rana nigromaculata during development and under exposure to hormones[J]. Journal of Environmental Sciences, 2014, 26(11):2331-2339
    Festing M F, Altman D G. Guidelines for the design and statistical analysis of experiments using laboratory animals[J]. ILAR Journal, 2002, 43(4):244-258
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4):402-408
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 危险化学品鱼类急性毒性分级试验方法:GB/T 21281-2007[S]. 北京:中国标准出版社, 2008
    Song M Y, Liang D, Liang Y, et al. Assessing developmental toxicity and estrogenic activity of halogenated bisphenol A on zebrafish (Danio rerio)[J]. Chemosphere, 2014, 112:275-281
  • 加载中
计量
  • 文章访问数:  1690
  • HTML全文浏览数:  1690
  • PDF下载数:  68
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-05-29

四溴双酚A和四氯双酚A对非洲爪蛙蝌蚪的毒性效应

    通讯作者: 秦占芬, E-mail: qinzhanfen@rcees.ac.cn
    作者简介: 牛玥(1995-),女,硕士,研究方向为毒理学,E-mail:296046855@qq.com
  • 1. 中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京 100085;
  • 2. 河北大学化学与环境科学学院, 保定 071002;
  • 3. 中国科学院大学, 北京 100049
基金项目:

国家重点研发计划资助项目(2017YFF0211203);国家自然科学基金面上项目(21876196)

摘要: 四溴双酚A(tetrabromobisphenol A,TBBPA)和四氯双酚A(tetrachlorobisphenol A,TCBPA)作为阻燃剂被大量生产和使用,其毒性效应受到关注。相对鱼类和哺乳类动物,TBBPA和TCBPA对两栖动物的毒性数据还比较缺乏。本文研究了TBBPA和TCBPA对非洲爪蛙蝌蚪的急性毒性,并比较了二者对氧化应激标记基因和凝血相关基因转录水平的影响。结果表明,TBBPA和TCBPA的48 h半致死浓度分别为4.31 mg·L-1和3.99 mg·L-1;在无蝌蚪死亡浓度下,TBBPA和TCBPA均能显著影响蝌蚪体内典型氧化应激标记基因的表达,其中,对谷胱甘肽转移酶(glutathione transferase)gst基因的影响最显著,TBBPA和TCBPA的效应相近;TBBPA和TCBPA对蝌蚪体内热休克蛋白的转录影响不明显;另外发现,TBBPA和TCBPA可导致蝌蚪产生凝血现象,同时凝血相关基因的转录水平被上调。综上可知,TBBPA和TCBPA对蝌蚪的急性毒性都为中毒,氧化应激效应也接近,但不引起热休克蛋白转录的变化。

English Abstract

参考文献 (25)

目录

/

返回文章
返回