3种碳纳米材料对斑马鱼生长发育、氧化应激及代谢的影响

孙晶, 欧阳少虎, 胡献刚, 周启星. 3种碳纳米材料对斑马鱼生长发育、氧化应激及代谢的影响[J]. 生态毒理学报, 2020, 15(6): 101-114. doi: 10.7524/AJE.1673-5897.20200706003
引用本文: 孙晶, 欧阳少虎, 胡献刚, 周启星. 3种碳纳米材料对斑马鱼生长发育、氧化应激及代谢的影响[J]. 生态毒理学报, 2020, 15(6): 101-114. doi: 10.7524/AJE.1673-5897.20200706003
Sun Jing, Ouyang Shaohu, Hu Xiangang, Zhou Qixing. Effects of Three Carbonaceous Nanomaterials on the Developmental Toxicity, Oxidative Stress, and Metabolic Profile in Zebrafish[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 101-114. doi: 10.7524/AJE.1673-5897.20200706003
Citation: Sun Jing, Ouyang Shaohu, Hu Xiangang, Zhou Qixing. Effects of Three Carbonaceous Nanomaterials on the Developmental Toxicity, Oxidative Stress, and Metabolic Profile in Zebrafish[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 101-114. doi: 10.7524/AJE.1673-5897.20200706003

3种碳纳米材料对斑马鱼生长发育、氧化应激及代谢的影响

    作者简介: 孙晶(1990-),女,博士研究生,研究方向为生态毒理学,E-mail:sunjing90s@yeah.net
    通讯作者: 周启星, E-mail: zhouqx@nankai.edu.cn
  • 基金项目:

    国家自然科学基金-山东联合基金(U1906222);高等学校学科创新引智计划项目(T2017002);国家自然科学基金面上项目(21677080)

  • 中图分类号: X171.5

Effects of Three Carbonaceous Nanomaterials on the Developmental Toxicity, Oxidative Stress, and Metabolic Profile in Zebrafish

    Corresponding author: Zhou Qixing, zhouqx@nankai.edu.cn
  • Fund Project:
  • 摘要: 碳纳米材料(carbonaceous nanomaterials,CNMs)是人工纳米材料的重要组成部分,在各领域应用广泛。以斑马鱼为模式动物,比较了氧化石墨烯(graphene oxide,GO)、碳纳米管(carbon tube,CNT)和氧化石墨烯量子点(graphene oxide quantum dot,GOQD)3种典型CNMs对斑马鱼幼鱼的生长发育毒性,并探究了低浓度长时间暴露下3种CNMs对斑马鱼成鱼亚急性毒性效应及分子机制。结果表明,0.01~10 mg·L-1的3种CNMs对斑马鱼胚胎发育无显著影响,但会诱导产生活性氧簇(ROS)和线粒体膜损伤,其毒性排序依次是GOQD > CNT > GO;环境相关浓度(0.01 mg·L-1)下斑马鱼成鱼在3种CNMs中亚急性暴露21 d后,会引起斑马鱼腮和肾脏细胞衰老,同时抑制斑马鱼总超氧化物歧化酶(T-SOD)活性;代谢组学分析表明,3种CNMs对斑马鱼代谢组影响的顺序为GOQD > CNT > GO,T-SOD活性与代谢组学关联分析表明,脂肪酸和脯氨酸的变化是引起斑马鱼T-SOD活性变化的分子机理之一。该结果为评价3种典型CNMs对生态系统和人体健康的潜在影响提供了理论依据。
  • 加载中
  • Lee J, Mahendra S, Alvarez P J J. Nanomaterials in the construction industry:A review of their applications and environmental health and safety considerations[J]. ACS Nano, 2010, 4(7):3580-3590
    Lightcap I V, Kosel T H, Kamat P V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide[J]. Nano Letters, 2010, 10(2):577-583
    Yang K J, Chen B L, Zhu X Y, et al. Aggregation, adsorption, and morphological transformation of graphene oxide in aqueous solutions containing different metal cations[J]. Environmental Science & Technology, 2016, 50(20):11066-11075
    Zhu J X, Zhu T, Zhou X Z, et al. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability[J]. Nanoscale, 2011, 3(3):1084-1089
    Choi W, Lahiri I, Seelaboyina R, et al. Synthesis of graphene and its applications:A review[J]. Critical Reviews in Solid State and Materials Sciences, 2010, 35(1):52-71
    Lee Y A, Durandin A, Dedon P C, et al. Oxidation of guanine in G, GG, and GGG sequence contexts by aromatic pyrenyl radical cations and carbonate radical anions:Relationship between kinetics and distribution of alkali-labile lesions[J]. Journal of Physical Chemistry B, 2008, 112(6):1834-1844
    Goodwin D G, Adeleye A S, Sung L, et al. Detection and quantification of graphene-family nanomaterials in the environment[J]. Environmental Science & Technology, 2018, 52(8):4491-4513
    Jia P P, Sun T, Junaid M, et al. Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo[J]. Environmental Pollution, 2019, 247:595-606
    Souza J P, Baretta J F, Santos F, et al. Toxicological effects of graphene oxide on adult zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2017, 186:11-18
    Hu X, Ouyang S H, Mu L, et al. Effects of graphene oxide and oxidized carbon nanotubes on the cellular division, microstructure, uptake, oxidative stress, and metabolic profiles[J]. Environmental Science & Technology, 2015, 49(18):10825-10833
    Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano, 2010, 4(10):5731-5736
    Ouyang S H, Li K W, Zhou Q X, et al. Widely distributed nanocolloids in water regulate the fate and risk of graphene oxide[J]. Water Research, 2019, 165:114987
    Sun J, Zhou Q X, Hu X G. Integrating multi-omics and regular analyses identifies the molecular responses of zebrafish brains to graphene oxide:Perspectives in environmental criteria[J]. Ecotoxicology and Environmental Safety, 2019, 180:269-279
    Garcia G R, Noyes P D, Tanguay R L. Advancements in zebrafish applications for 21st century toxicology[J]. Pharmacology & Therapeutics, 2016, 161:11-21
    Song Y Y, Li R J, Zhang Y H, et al. Mass spectrometry-based metabolomics reveals the mechanism of ambient fine particulate matter and its components on energy metabolic reprogramming in BEAS-2B cells[J]. Science of the Total Environment, 2019, 651:3139-3150
    Xu Y Y, Wang W J, Zhou J, et al. Metabolomics analysis of a mouse model for chronic exposure to ambient PM2.5[J]. Environmental Pollution, 2019, 247:953-963
    Zhang X L, Zhou Q X, Zou W, et al. Molecular mechanisms of developmental toxicity induced by graphene oxide at predicted environmental concentrations[J]. Environmental Science & Technology, 2017, 51(14):7861-7871
    Wang C, Yang X, Zheng Q, et al. Halobenzoquinone-induced developmental toxicity, oxidative stress, and apoptosis in zebrafish embryos[J]. Environmental Science & Technology, 2018, 52(18):10590-10598
    Chen Y M, Hu X G, Sun J, et al. Specific nanotoxicity of graphene oxide during zebrafish embryogenesis[J]. Nanotoxicology, 2016, 10(1):42-52
    Huang Z Y, Xu B, Huang X M, et al. Metabolomics reveals the role of acetyl-l-carnitine metabolism in gamma-Fe2O3 NP-induced embryonic development toxicity via mitochondria damage[J]. Nanotoxicology, 2019, 13(2):204-220
    Zhao X S, Wang S T, Wu Y, et al. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish[J]. Aquatic Toxicology, 2013, 136:49-59
    Mu L, Gao Y, Hu X G. Characterization of biological secretions binding to graphene oxide in water and the specific toxicological mechanisms[J]. Environmental Science & Technology, 2016, 50(16):8530-8537
    Nouara A, Wu Q L, Li Y X, et al. Carboxylic acid functionalization prevents the translocation of multi-walled carbon nanotubes at predicted environmentally relevant concentrations into targeted organs of nematode Caenorhabditis elegans[J]. Nanoscale, 2013, 5(13):6088-6096
    Chowdhury I, Duch M C, Mansukhani N D, et al. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment[J]. Environmental Science & Technology, 2013, 47(12):6288-6296
    Geng Y Q, Guan J T, Xu X H, et al. Senescence-associated beta-galactosidase activity expression in aging hippocampal neurons[J]. Biochemical and Biophysical Research Communications, 2010, 396(4):866-869
    Geiger B, Nguyen H M, Wenig S, et al. From by-product to valuable components:Efficient enzymatic conversion of lactose in whey using beta-galactosidase from Streptococcus thermophilus[J]. Biochemical Engineering Journal, 2016, 116:45-53
    Wang J, Li Y J, Lu L, et al. Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma)[J]. Environmental Pollution, 2019, 254:10
    He B, Ebarasi L, Hultenby K, et al. Podocin-green fluorescence protein allows visualization and functional analysis of podocytes[J]. Journal of the American Society of Nephrology, 2011, 22(6):1019-1023
    Kim S, Ryu D Y. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues[J]. Journal of Applied Toxicology, 2013, 33(2):78-89
  • 加载中
计量
  • 文章访问数:  2935
  • HTML全文浏览数:  2935
  • PDF下载数:  118
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-07-06

3种碳纳米材料对斑马鱼生长发育、氧化应激及代谢的影响

    通讯作者: 周启星, E-mail: zhouqx@nankai.edu.cn
    作者简介: 孙晶(1990-),女,博士研究生,研究方向为生态毒理学,E-mail:sunjing90s@yeah.net
  • 南开大学环境科学与工程学院, 环境污染过程与基准教育部重点实验室, 天津市城市生态环境修复与污染防治重点实验室, 天津 300071
基金项目:

国家自然科学基金-山东联合基金(U1906222);高等学校学科创新引智计划项目(T2017002);国家自然科学基金面上项目(21677080)

摘要: 碳纳米材料(carbonaceous nanomaterials,CNMs)是人工纳米材料的重要组成部分,在各领域应用广泛。以斑马鱼为模式动物,比较了氧化石墨烯(graphene oxide,GO)、碳纳米管(carbon tube,CNT)和氧化石墨烯量子点(graphene oxide quantum dot,GOQD)3种典型CNMs对斑马鱼幼鱼的生长发育毒性,并探究了低浓度长时间暴露下3种CNMs对斑马鱼成鱼亚急性毒性效应及分子机制。结果表明,0.01~10 mg·L-1的3种CNMs对斑马鱼胚胎发育无显著影响,但会诱导产生活性氧簇(ROS)和线粒体膜损伤,其毒性排序依次是GOQD > CNT > GO;环境相关浓度(0.01 mg·L-1)下斑马鱼成鱼在3种CNMs中亚急性暴露21 d后,会引起斑马鱼腮和肾脏细胞衰老,同时抑制斑马鱼总超氧化物歧化酶(T-SOD)活性;代谢组学分析表明,3种CNMs对斑马鱼代谢组影响的顺序为GOQD > CNT > GO,T-SOD活性与代谢组学关联分析表明,脂肪酸和脯氨酸的变化是引起斑马鱼T-SOD活性变化的分子机理之一。该结果为评价3种典型CNMs对生态系统和人体健康的潜在影响提供了理论依据。

English Abstract

参考文献 (29)

目录

/

返回文章
返回