典型石化企业排放有毒有害大气污染物人体健康风险评估
Human Health Risk Assessment of Hazardous Air Pollutants in Typical Petrochemical Enterprises
-
摘要: 石化行业生产过程中会产生有毒有害大气污染物,并可能对人体健康产生危害。为贯彻落实《大气污染防治法》第七十八条中对有毒有害大气污染物(hazardous air pollutants,HAPs)实行风险管理,评估环境风险的要求,有必要开展石化企业排放HAPs的人体健康风险评估。本研究采用美国环境保护局(US EPA)发布的人体健康风险评估手册F部分吸入风险评估指南中的方法,推算出HAPs物质对人体健康的致癌风险值和非致癌风险值;通过CALPUFF模型模拟预测出典型石化企业HAPs物质扩散范围及空气中的浓度,并将模拟预测得到的污染物浓度与推算得到的风险值进行比较,进而表征园区内该企业排放HAPs对人体健康的风险。结果表明,基于最坏情况分析,该石化企业排放的HAPs致癌风险值为0.421 μ g·m-3,非致癌风险值为2.212 μ g·m-3,CALPUFF模拟预测空气中污染物浓度最大为0.62 μ g·m-3,且模型预测的月均浓度均未超过致癌和非致癌风险值,风险表征结果表明,该石化企业排放的HAPs物质对人体健康不存在致癌和非致癌风险。但本研究仅针对某石化企业开展人体健康风险评估,并不能代表石化行业排放有毒有害大气污染物对人体健康风险的整体水平。Abstract: Volatile organic compounds (VOCs) will be produced in the production process of petrochemical industry, and some VOCs are toxic, which may cause harm to human health. In order to implement article 78 of the air pollution control law that requires conducting risk management and assessing the environmental risk of hazardous air pollutants (HAPs), it is necessary to carry out research on the human health risk assessment of HAPs substances in petrochemical enterprises. In this study, the threshold values of carcinogenic and non-carcinogenic risks of HAPs to human health were calculated using the methods in part F of the human health risk assessment manual published by U.S. Environmental Protection Agency (US EPA). CALPUFF Model was used to simulate and predict the diffusion range of HAPs and the concentration of pollutants in the air of typical petrochemical enterprises. We compared the predicted value with the calculated risk threshold to characterize the risks of HAPs emitted by the enterprise to human health in the park. Results showed that, based on the worst-case analysis, the carcinogenic risk threshold of the emissions of HAPs from petrochemical enterprises was 0.421 μg·m-3, the non-carcinogenic risk threshold was 2.212 μg·m-3, and the predicted value of the maximum air pollutant concentration by CALPUFF simulation was 0.62 μg·m-3. Besides, the monthly average concentrations predicted by models are less than carcinogenic and non-carcinogenic threshold. It is indicated that the petrochemical company's emission of HAPs poses little carcinogenic or non-carcinogenic risks to human health. However, this study did not consider the emission of all toxic and harmful air pollutants in the petrochemical industry, so the assessment results cannot represent its overall level of human health risks.
-
Derwent R G, Jenkin M E, Passant N R, et al. Reactivity-based strategies for photochemical ozone control in Europe[J]. Environmental Science and Policy, 2007, 10(5):445-453 Lu Q, Zheng J Y, Ye S Q, et al. Emission trends and source characteristics of SO2, NOX, PM10 and VOCs in the Pearl River Delta region from 2000 to 2009[J]. Atmospheric Environment, 2013, 76(9):11-20 Liu C C, Chen C C, Wu T N, et al. Association of brain cancer with residential exposure to petrochemical air pollution in Taiwan[J]. Journal of Toxicology and Environmental Health, Part A, 2008, 71(5):310-314 林宗伟, 何旭霞, 于彦杰, 等. 石化企业乙烯厂环境空气中低浓度苯乙烯和三苯对男性生殖健康的影响[J]. 实用预防医学, 2014, 21(6):661-664 Lin Z W, He X X, Yu Y J, et al. Effects of low concentrations of styrene and mixed benzene in environmental air on reproductive health of male workers in an ethylene plant of a petrochemical corporation[J]. Practical Preventive Medicine, 2014, 21(6):661-664(in Chinese)
Rusconi F, Catelan D, Accetta G, et al. Asthma symptoms, lung function, and markers of oxidative stress and inflammation in children exposed to oil refinery pollution[J]. Journal of Asthma, 2011, 48(1):84-90 郭斌, 么瑞静, 张硕, 等. 青霉素发酵尾气VOCs污染特征及健康风险评价[J]. 环境科学, 2018, 39(7):3102-3109 Guo B, Yao R J, Zhang S, et al. Pollution condition and health risk assessment of VOCs in fermentation exhaust from penicillin production[J]. Environmental Science, 2018, 39(7):3102-3109(in Chinese)
郭斌, 宋玉, 律国黎, 等. 制药企业密集区空气中VOCs污染特性及健康风险评价[J]. 环境化学, 2014, 33(8):1354-1360 Guo B, Song Y, Lv G L, et al. Pollution analysis and health risk assessment of volatile organic compounds from dense pharmaceutical production areas[J]. Environmental Chemistry, 2014, 33(8):1354-1360(in Chinese)
冷朋波, 边国林, 王爱红, 等. 美国EPA吸入风险模型在木质家具制造企业职业健康风险评估中的应用[J]. 环境与职业医学, 2014, 31(11):858-862 Leng P B, Bian G L, Wang A H, et al. Application of U.S. EPA inhalation risk model to occupational health risk assessment of wooden furniture manufacturing factories[J]. Journal of Environmental & Occupational Medicine, 2014, 31(11):858-862(in Chinese)
袁伟明, 张美辨, 高向景, 等. 美国吸入风险评估模型积累效应在制鞋企业评估毒物致癌性的应用[J]. 中国预防医学杂志, 2016, 17(3):183-186 Yuan W M, Zhang M B, Gao X J, et al. Cumulative effect of inhalation risk assessment model of USEPA in chemical cancer risk assessment of shoe making enterprises[J]. Chinese Preventive Medicine, 2016, 17(3):183-186(in Chinese)
周莉芳, 张美辨, 袁伟明, 等. 应用美国国家环境保护署吸入风险模型评估职业危害的研究[J]. 预防医学, 2014, 26(2):109-113 Zhou L F, Zhang M B, Yuan W M, et al. A study on application of inhalation risk assessment model of USEPA in occupational health risk assessment[J]. Zhejiang Journal of Preventive Medicine, 2014, 26(2):109-113(in Chinese)
陈丹. 珠三角某炼油厂装置区VOCs健康风险评价及不确定性研究[D]. 广州:暨南大学, 2017:42-59 Chen D. Study on health risk assessment and uncertainty analysis of volatile organic compounds from oil refinery units in Pearl River Delta, China[D]. Guangzhou:Jinan University, 2017:42 -59(in Chinese)
许亚宣, 李小敏, 于华通, 等. 西北石化区周围毒害类空气污染物污染特征及健康风险评价[J]. 环境科学, 2017, 38(7):81-91 Xu Y X, Li X M, Yu H T, et al. Pollution characteristics and health risk assessment of hazardous air pollutants in the surroundings of three petrochemical industries in northwest China[J]. Environmental Science, 2017, 38(7):81-91(in Chinese)
Chen M J, Lin C H, Lai C H, et al. Excess lifetime cancer risk assessment of volatile organic compounds emitted from a petrochemical industrial complex[J]. Aerosol and Air Quality Research, 2016, 16(8):1954-1966 朱晓晶, 于洋, 竹涛, 等. Copeland法与证据权重法在污染物危害性排序上的对比研究[J]. 生态毒理学报, 2019, 14(3):214-225 Zhu X J, Yu Y, Zhu T, et al. A comparative study of Copeland and weight of evidence on harmfulness of pollutants[J]. Asian Journal of Ecotoxicology, 2019, 14(3):214-225(in Chinese)
U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund (RAGS):Part F[EB/OL]. (2009-01-01)[2019-08-25]. https://www.epa.gov/sites/production/files/2015-09/documents/partf_200901_final.pdf 李如忠, 童芳, 周爱佳, 等. 基于梯形模糊数的地表灰尘重金属污染健康风险评价模型[J]. 环境科学学报, 2011, 31(8):1790-1798 Li R Z, Tong F, Zhou A J, et al. Fuzzy assessment model for the health risk of heavy metals in urban dusts based on trapezoidal fuzzy numbers[J]. Acta Scientiae Circumstantiae, 2011, 31(8):1790-1798(in Chinese)
Chen S C, Liao C M. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources[J]. Science of the Total Environment, 2006, 366(1):112-123 Contaminated Sites Remediation Program. Risk Assessment Procedures Manual[R]. Alaska:Alaska Department of Environmental Conservation, 2000:57-64 杨朝旭, 段成龙, 张晶晶, 等. CALPUFF大气扩散模型研究与应用进展[J]. 广州化工, 2018, 46(3):20-22 Yang Z X, Duan C L, Zhang J J, et al. Research and application of CALPUFF atmospheric diffusion model[J]. Guangzhou Chemical Industry, 2018, 46(3):20-22(in Chinese)
杜世明. AERMOD和CALPUFF模型用于济南地区空气污染模拟效果的对比研究[D]. 济南:山东师范大学, 2013:22-33 Du S M.The application and comparison of AERMOD and CALPUFF model for the effects of the Jinan area's air pollution modeling[D]. Jinan:Shandong Normal University, 2013:22 -33(in Chinese)
计量
- 文章访问数: 2101
- HTML全文浏览数: 2101
- PDF下载数: 65
- 施引文献: 0