化学品足迹法筛查电镀行业潜在高风险化学品

刘芸, 赵旭, 熊涵磊, 胡小英, 王炜, 胡国成, 温勇. 化学品足迹法筛查电镀行业潜在高风险化学品[J]. 生态毒理学报, 2020, 15(3): 184-194. doi: 10.7524/AJE.1673-5897.20191015001
引用本文: 刘芸, 赵旭, 熊涵磊, 胡小英, 王炜, 胡国成, 温勇. 化学品足迹法筛查电镀行业潜在高风险化学品[J]. 生态毒理学报, 2020, 15(3): 184-194. doi: 10.7524/AJE.1673-5897.20191015001
Liu Yun, Zhao Xu, Xiong Hanlei, Hu Xiaoying, Wang Wei, Hu Guocheng, Wen Yong. Application of Chemical Footprint Method in Screening of Potential High-Risk Chemicals in Electroplating Industry[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 184-194. doi: 10.7524/AJE.1673-5897.20191015001
Citation: Liu Yun, Zhao Xu, Xiong Hanlei, Hu Xiaoying, Wang Wei, Hu Guocheng, Wen Yong. Application of Chemical Footprint Method in Screening of Potential High-Risk Chemicals in Electroplating Industry[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 184-194. doi: 10.7524/AJE.1673-5897.20191015001

化学品足迹法筛查电镀行业潜在高风险化学品

    作者简介: 刘芸(1983-),女,硕士,高级工程师,研究方向为化学品环境风险评估,E-mail:liuyun@scies.org
  • 基金项目:

    基国家重点研发计划课题(2018YFC1800304,2018YFC1801505);生态环境部华南环境科学研究所中央级公益性科研院所基本科研业务专项资助项目(2206030201500040028,PM-zx097-202002-074)

  • 中图分类号: X171.5

Application of Chemical Footprint Method in Screening of Potential High-Risk Chemicals in Electroplating Industry

  • Fund Project:
  • 摘要: 现代工业化学品带来了大量潜在的生态环境风险。目前,国内对工业化学品的风险识别、评估及管理等严重缺乏。本研究利用化学品足迹理想模型(USEtox),计算电镀行业化学品不同生命周期排放产生的生态毒性影响,筛选电镀行业潜在高风险化学品。结果显示,电镀行业使用的有机化学品中十二烷基硫酸钠的生态毒性足迹(chemical footprint,ChF)分值最高,为2.30×10-2 PAF·km3·a;在重金属中Cu2+的生态毒性足迹分值最高,为4.20 PAF·km3·a。重金属生态毒性足迹显著高于有机化学品(>2个数量级)。因此,重金属是电镀行业主要高风险化学品,也是电镀行业最主要环境风险源。USEtox可用于定量表征行业化学品带来的区域环境风险,为以行业为单位开展工业化学品区域生态环境风险评估提供新思路。
  • 加载中
  • United Nations Environment Programme. Global Chemicals Outlook Ⅱ. From legacies to innovative solutions:Implementing the 2030 agenda for sustainable development-Synthesis report[R]. United Nations Environment Programme, 2019
    许宜平, 王子健. 面向绿色化学:融合生命周期的化学品环境风险评价[J]. 过程工程学报, 2018, 18(增刊):43-51 Xu Y P, Wang Z J. Toward green chemistry:Integrating life cycle with environmental risk assessment of chemicals[J]. The Chinese Journal of Process Engineering, 2018

    , 18(S1):43-51(in Chinese)

    Harder R, Holmquist H, Molander S, et al. Review of environmental assessment case studies blending elements of risk assessment and life cycle assessment[J]. Environmental Science & Technology, 2015, 49(22):13083-13093
    孙赵鑫, 施晓清, 杨建新. 生命周期评价与环境风险评价方法整合研究述评[G]. 北京:中国可持续发展研究会, 2015:210-215 Sun Z X, Shi X Q, Yang J X. Integrated research on lifecycle analysis and environmental risk evaluation methods[G]. Chinese Society for Sustainable Development, 2015:210

    -215(in Chinese)

    杜翠红, 王中钰, 陈景文, 等. 化学品足迹:概念、研究进展及挑战[J]. 生态毒理学报, 2016, 11(2):18-26

    Du C H, Wang Z Y, Chen J W, et al. Chemical footprint:Concepts, research progress and challenges[J]. Asian Journal of Ecotoxicology, 2016, 11(2):18-26(in Chinese)

    Hoof G V, Schowanek D, Franceschini H, et al. Ecotoxicity impact assessment of laundry products:A comparison of USEtox and critical dilution volume approaches[J]. International Journal of Life Cycle Assessment, 2011, 16(8):803-818
    Roos S, Posner S, Jonsson C, et al. Is unbleached cotton better than bleached? Exploring the limits of life-cycle assessment in the textile sector[J]. Clothing & Textiles Research Journal, 2015, 33(4):250-261
    田泽君, 王来力, 李一. 纺织服装产品的化学品足迹核算与评价[J]. 纺织, 2019, 56(1):33-37

    Tian Z J, Wang L L, Li Y. Calculation and assessment of chemical footprint of textiles and apparel[J]. Journal of Silk, 2019, 56(1):33-37(in Chinese)

    李一, 牟金莹, 骆艳, 等. 纺织印染工业生态毒性足迹核算与评价示范[J]. 现代纺织技术, 2019, 27(4):65-70

    Li Y, Mou J Y, Luo Y, et al. Demonstration of ecotoxicity footprint assessment of textile dyeing industry[J]. Advanced Textile Technology, 2019, 27(4):65-70(in Chinese)

    储江, 李一, 徐平华, 等. 纺织服装产品环境足迹核算与评价[J]. 浙江理工大学学报:自然科学版, 2019, 41(6):707-715

    Chu J, Li Y, Xu P H, et al. Calculation and assessment of product environmental footprint of textiles and apparel[J]. Journal of Zhejiang Sci-Tech University:Natural Sciences Edition, 2019, 41(6):707-715(in Chinese)

    Querini F, Morel S, Boch V, et al. USEtox relevance as an impact indicator for automotive fuels application on diesel fuel gasoline and hard coal electricity[J]. International Journal of Life Cycle Assessment, 2011, 16(16):829-840
    谢修银, 汪存信, 王志勇. SDS抑制乙酰胆碱酯酶反应的热动力学研究[J]. 化学学报, 2006, 64(21):2151-2156

    Xie X Y, Wang C X, Wang Z Y. Thermokinetic studies on the inhibition of acetylcholinesterase reaction by SDS[J]. Acta Chimica Sinica, 2006, 64(21):2151-2156(in Chinese)

    余坦健, 简急常, 林兴, 等. 十二烷基苯磺酸钠对尼奥罗非鱼免疫毒性的研究[J]. 南方水产, 2008, 4(3):33-37

    Yu T J, Jian J C, Lin X, et al. Studies on immunotoxicity of phenol and SDBS to hybrid tilapia (Tilapia nilotica×Taurea)[J]. South China Fisheries Science, 2008, 4(3):33-37(in Chinese)

    鲁静, 周催, 孙娜, 等. 丙烯酰胺生殖和发育毒性及生物标志物的研究进展[J]. 食品安全质量检测学报, 2014, 5(2):457-462

    Lu J, Zhou C, Sun N, et al. Review of the biomarker research of acrylamide reproductive and developmental toxicity[J]. Journal of Food Safety and Quality, 2014, 5(2):457-462(in Chinese)

    梁雪芳. 基于蛋白组学的环境污染物毒性效应评价和作用机制研究[D]. 北京:中国科学院研究生院, 2014:1-5 Liang X F. Toxicity assessment and mechanisms investigation of environmental pollutants based on proteomic methods[D]. Beijing:Graduate School of Chinese Academy of Sciences, 2014:1

    -5(in Chinese)

    中华人民共和国环境保护局, 中华人民共和国国家质量监督检验检疫局. GB 21900-2008电镀污染物排放标准[S]. 北京:中国环境科学出版社, 2008
    Organisation for Economic Co-operation and Development. Environmental health and safety publications series on emission scenario documents No. 25 Emission scenario document for chemicals used in the electronics industry. EVN/JM/MONO(2010)37[R]. Paris:Organisation for Economic Co-operation and Development, 2010
    中华人民共和国生态环境部. HJ984-2018污染源源强核算技术指南电镀[S]. 北京:中国环境科学出版社, 2018
    Fantke P (Ed). USEtox® 2.0 Documentation (Version 1)[CP]. USEtox® International Center, 2017:1-208
    Rosenbaum R K, Bachmann T M, Gold L S, et al. USEtox-the UNEP-SETAC toxicity model:Recommended characterization factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment[J]. The International Journal of Life Cycle Assessment, 2008, 13(7):532-546
    Hauschild M Z, Huijbregts M, Jolliet O, et al. Building a model based on scientific consensus for life cycle impact assessment of chemicals:The search for harmony and parsimony[J]. Environmental Science & Technology, 2008, 42(14):7032-7037
    Henderson R K, Hauschild M Z, Meent D V D, et al. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis sensitivity to key chemical properties[J]. International Journal of Life Cycle Assessment, 2011, 16(8):701-709
    European Communities. Common implementation strategy for the water framework directive (2000/60/EC) Guidance document No. 27 Technical guidance for deriving environmental quality standards[R]. European Communities, 2011
    Bjørn A, Diamond M, Birkved M,et al. Chemical footprint method for improved communication of freshwater ecotoxicity impacts in the context of ecological limits[J]. Envieonmental Science & Technology, 2014, 48:13253-13262
    赵委托. 东莞地区电镀厂重金属污染与风险评价研究[D]. 武汉:中国地质大学, 2016:6-45 Zhao W T. Study on pollution and risk assessment of heavy metals surrounding electroplating plants in Dongguan[D]. Wuhan:China University of Geosciences, 2016:6

    -45(in Chinese)

    赵慧, 何博, 王铁宇, 等. 我国南方典型城市土壤重金属污染特征及源汇关系分析[J]. 环境科学学报, 2019, 39(7):2231-2239

    Zhao H, He B, Wang T Y, et al. Pollution characteristics of heavy metals and source-sink relationship in typical city of the South China[J]. Acta Scientiae Circumstantiae, 2019, 39(7):2231-2239(in Chinese)

    Ortiz de García S, García-Encina P A, Irusta-Mata R. The potential ecotoxicological impact of pharmaceutical and personal care products on humans and freshwater, based on USEtoxTM characterization factors. A Spanish case study of toxicity impact scores[J]. Science of the Total Environment, 2017, 609(2017):429-445
    郝天. 基于USEtox模型的焦化行业优先污染物筛选排序研究[D]. 北京:清华大学, 2013:10-50 Hao T. Research on ranking and screening priority to coke industry pollutants in terms of toxicity based on USEtox[D]. Beijing:Tsinghua University, 2013:10

    -50(in Chinese)

  • 加载中
计量
  • 文章访问数:  1524
  • HTML全文浏览数:  1524
  • PDF下载数:  45
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-15

化学品足迹法筛查电镀行业潜在高风险化学品

    作者简介: 刘芸(1983-),女,硕士,高级工程师,研究方向为化学品环境风险评估,E-mail:liuyun@scies.org
  • 生态环境部华南环境科学研究所, 国家环境保护环境污染健康风险评价重点实验室, 广州 510655
基金项目:

基国家重点研发计划课题(2018YFC1800304,2018YFC1801505);生态环境部华南环境科学研究所中央级公益性科研院所基本科研业务专项资助项目(2206030201500040028,PM-zx097-202002-074)

摘要: 现代工业化学品带来了大量潜在的生态环境风险。目前,国内对工业化学品的风险识别、评估及管理等严重缺乏。本研究利用化学品足迹理想模型(USEtox),计算电镀行业化学品不同生命周期排放产生的生态毒性影响,筛选电镀行业潜在高风险化学品。结果显示,电镀行业使用的有机化学品中十二烷基硫酸钠的生态毒性足迹(chemical footprint,ChF)分值最高,为2.30×10-2 PAF·km3·a;在重金属中Cu2+的生态毒性足迹分值最高,为4.20 PAF·km3·a。重金属生态毒性足迹显著高于有机化学品(>2个数量级)。因此,重金属是电镀行业主要高风险化学品,也是电镀行业最主要环境风险源。USEtox可用于定量表征行业化学品带来的区域环境风险,为以行业为单位开展工业化学品区域生态环境风险评估提供新思路。

English Abstract

参考文献 (28)

目录

/

返回文章
返回