环境胞外胞内DNA的行为归趋及生态功能研究进展

张忠云, 叶茂, 孙明明, 黄丹, 张胜田, 胡锋, 蒋新. 环境胞外胞内DNA的行为归趋及生态功能研究进展[J]. 生态毒理学报, 2020, 15(6): 10-23. doi: 10.7524/AJE.1673-5897.20191027003
引用本文: 张忠云, 叶茂, 孙明明, 黄丹, 张胜田, 胡锋, 蒋新. 环境胞外胞内DNA的行为归趋及生态功能研究进展[J]. 生态毒理学报, 2020, 15(6): 10-23. doi: 10.7524/AJE.1673-5897.20191027003
Zhang Zhongyun, Ye Mao, Sun Mingming, Huang Dan, Zhang Shengtian, Hu Feng, Jiang Xin. Review of Extracellular and Intracellular DNA Environmental Behavior and Ecological Function[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 10-23. doi: 10.7524/AJE.1673-5897.20191027003
Citation: Zhang Zhongyun, Ye Mao, Sun Mingming, Huang Dan, Zhang Shengtian, Hu Feng, Jiang Xin. Review of Extracellular and Intracellular DNA Environmental Behavior and Ecological Function[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 10-23. doi: 10.7524/AJE.1673-5897.20191027003

环境胞外胞内DNA的行为归趋及生态功能研究进展

    作者简介: 张忠云(1994-),女,博士研究生,研究方向为环境分子毒理学,E-mail:zyzhang@issas.ac.cn
    通讯作者: 叶茂, E-mail: yemao@issas.ac.cn
  • 基金项目:

    国家重点研发计划资助项目(2018FYC1803100);国家青年人才托举项目(2018QNRC001);国家自然科学基金面上项目(41771350);江苏省优秀青年基金资助项目(BK20180110)

  • 中图分类号: X171.5

Review of Extracellular and Intracellular DNA Environmental Behavior and Ecological Function

    Corresponding author: Ye Mao, yemao@issas.ac.cn
  • Fund Project:
  • 摘要: 胞外DNA(extracellular DNA,extDNA)和胞内DNA(intracellular DNA,intDNA)广泛存在于陆生和水生生态环境系统中,密切参与环境-微生物和微生物种间的吸附、降解和自然转化等过程,在物质循环和基因信息传递中发挥重要的生态学作用。胞外DNA在环境中不易受核酸酶攻击,相对稳定,可作为历史微生物基因库,与胞内DNA都可反映功能基因丰度及其对应微生物活性;同时,胞外DNA是细胞生物膜中的重要组分,在微生物细胞抵御抗生素、重金属和农药等外来污染物胁迫中发挥了重要作用。本文从ext/intDNA环境行为、extDNA在生物膜中的环境作用、物质信息传递和ext/intDNA生态学功能等角度,综述了环境ext/intDNA的行为归趋及生态功能研究进展,提出了现阶段研究不足,并对未来研究方向进行了展望。本综述可为深入理解环境ext/intDNA的生态功能作用机制提供新的科学认知。
  • 加载中
  • Levy-Booth D J, Campbell R G, Gulden R H, et al. Cycling of extracellular DNA in the soil environment[J]. Soil Biology and Biochemistry, 2007, 39(12):2977-2991
    Pietramellara G, Ascher J, Borgogni F, et al. Extracellular DNA in soil and sediment:Fate and ecological relevance[J]. Biology and Fertility of Soils, 2009, 45(3):219-235
    DeFrancesco A S, Masloboeva N, Syed A K, et al. Genome-wide screen for genes involved in eDNA release during biofilm formation by Staphylococcus aureus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(29):E5969-E5978
    Wang F, Che R X, Xu Z H, et al. Assessing soil extracellular DNA decomposition dynamics through plasmid amendment coupled with real-time PCR[J]. Journal of Soils and Sediments, 2019, 19(1):91-96
    Flemming H C, Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9):623-633
    Choi J J, Reich C F 3rd, Pisetsky D S. The role of macrophages in the in vitro generation of extracellular DNA from apoptotic and necrotic cells[J]. Immunology, 2005, 115(1):55-62
    Nagler M, Podmirseg S M, Griffith G W, et al. The use of extracellular DNA as a proxy for specific microbial activity[J]. Applied Microbiology and Biotechnology, 2018, 102(6):2885-2898
    Yuan Q B, Huang Y M, Wu W B, et al. Redistribution of intracellular and extracellular free & adsorbed antibiotic resistance genes through a wastewater treatment plant by an enhanced extracellular DNA extraction method with magnetic beads[J]. Environment International, 2019, 131:104986
    Morrissey E M, McHugh T A, Preteska L, et al. Dynamics of extracellular DNA decomposition and bacterial community composition in soil[J]. Soil Biology and Biochemistry, 2015, 86:42-49
    Sutherland I W. The biofilm matrix-An immobilized but dynamic microbial environment[J]. Trends in Microbiology, 2001, 9(5):222-227
    Pietramellara G, Ceccherini M T, Ascher J, et al. Persistence of transgenic and not transgenic extracellular DNA in soil and bacterial transformation[J]. Rivista Di Biologia, 2006, 99(1):37-68
    Zawadzki P, Cohan F M. The size and continuity of DNA segments integrated in Bacillus transformation[J]. Genetics, 1995, 141(4):1231-1243
    Mao D Q, Luo Y, Mathieu J, et al. Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation[J]. Environmental Science & Technology, 2014, 48(1):71-78
    Ranjard L, Richaume A. Quantitative and qualitative microscale distribution of bacteria in soil[J]. Research in Microbiology, 2001, 152(8):707-716
    Vlassov V V, Laktionov P P, Rykova E Y. Extracellular nucleic acids[J]. BioEssays, 2017, 29:654-667
    Corinaldesi C, Beolchini F, Dell'Anno A. Damage and degradation rates of extracellular DNA in marine sediments:Implications for the preservation of gene sequences[J]. Molecular Ecology, 2008, 17(17):3939-3951
    Dell'Anno A, Danovaro R. Extracellular DNA plays a key role in deep-sea ecosystem functioning[J]. Science, 2005, 309(5744):2179
    Lennon J T, Muscarella M E, Placella S A, et al. How, when, and where relic DNA affects microbial diversity[J]. mBio, 2018, 9(3):e00618-e00637
    Corinaldesi C, Barucca M, Luna G M, et al. Preservation, origin and genetic imprint of extracellular DNA in permanently anoxic deep-sea sediments[J]. Molecular Ecology, 2011, 20(3):642-654
    Ramírez G A, Jørgensen S L, Zhao R, et al. Minimal influence of extracellular DNA on molecular surveys of marine sedimentary communities[J]. Frontiers in Microbiology, 2018, 9:2969
    Steinberger R E, Holden P A. Extracellular DNA in single- and multiple-species unsaturated biofilms[J]. Applied and Environmental Microbiology, 2005, 71(9):5404-5410
    Whitchurch C B, Tolker-Nielsen T, Ragas P C, et al. Extracellular DNA required for bacterial biofilm formation[J]. Science, 2002, 295(5559):1487
    Torti A, Jørgensen B B, Lever M A. Preservation of microbial DNA in marine sediments:Insights from extracellular DNA pools[J]. Environmental Microbiology, 2018, 20(12):4526-4542
    Guo X P, Yang Y, Lu D P, et al. Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary[J]. Water Research, 2018, 129:277-286
    Zhang Y, Li A L, Dai T J, et al. Cell-free DNA:A neglected source for antibiotic resistance genes spreading from WWTPs[J]. Environmental Science & Technology, 2018, 52(1):248-257
    Dell'Anno A, Corinaldesi C. Degradation and turnover of extracellular DNA in marine sediments:Ecological and methodological considerations[J]. Applied and Environmental Microbiology, 2004, 70(7):4384-4386
    Corinaldesi C, Danovaro R, Dell'Anno A. Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments[J]. Applied and Environmental Microbiology, 2005, 71(1):46-50
    Aardema B W, Lorenz M G, Krumbein W E. Protection of sediment-adsorbed transforming DNA against enzymatic inactivation[J]. Applied and Environmental Microbiology, 1983, 46(2):417-420
    Dell'Anno A, Stefano B, Danovaro R. Quantification, base composition, and fate of extracellular DNA in marine sediments[J]. Limnology and Oceanography, 2002, 47(3):899-905
    Corinaldesi C, Beolchini F, Dell'Anno A. Damage and degradation rates of extracellular DNA in marine sediments:Implications for the preservation of gene sequences[J]. Molecular Ecology, 2008, 17(17):3939-3951
    Nielsen K M, Johnsen P J, Bensasson D, et al. Release and persistence of extracellular DNA in the environment[J]. Environmental Biosafety Research, 2007, 6(1-2):37-53
    Carini P, Marsden P J, Leff J W, et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity[J]. Nature Microbiology, 2016, 2(3):1-6
    Gustave W, Yuan Z F, Sekar R, et al. Relic DNA does not obscure the microbial community of paddy soil microbial fuel cells[J]. Research in Microbiology, 2019, 170(2):97-104
    Dong P Y, Wang H, Fang T T, et al. Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG[J]. Environment International, 2019, 125:90-96
    Agnelli A, Ascher J, Corti G, et al. Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA[J]. Soil Biology and Biochemistry, 2004, 36(5):859-868
    Zhang Y P, Snow D D, Parker D, et al. Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures[J]. Environmental Science & Technology, 2013, 47(18):10206-10213
    Corinaldesi C, Tangherlini M, Manea E, et al. Extracellular DNA as a genetic recorder of microbial diversity in benthic deep-sea ecosystems[J]. Scientific Reports, 2018, 8(1):1839
    Bailiff M D, Karl D M. Dissolved and particulate DNA dynamics during a spring bloom in the Antarctic Peninsula region, 1986-1987[J]. Deep Sea Research Part A Oceanographic Research Papers, 1991, 38(8-9):1077-1095
    Siuda W, Chróst R J, Güde H. Distribution and origin of dissolved DNA in lakes of different trophic states[J]. Aquatic Microbial Ecology, 1998, 15(1):89-96
    Siuda W, Chróst R J. Concentration and susceptibility of dissolved DNA for enzyme degradation in lake water-some methodological remarks[J]. Aquatic Microbial Ecology, 2000, 21:195-201
    Blagodatskaya E V, Blagodatskii S A, Anderson T H. Quantitative isolation of microbial DNA from different types of soils of natural and agricultural ecosystems[J]. Microbiology, 2003, 72(6):744-749
    England L S, Pollok J, Vincent M, et al. Persistence of extracellular baculoviral DNA in aquatic microcosms:Extraction, purification, and amplification by the polymerase chain reaction (PCR)[J]. Molecular and Cellular Probes, 2005, 19(2):75-80
    Niemeyer J, Gessler F. Determination of free DNA in soils[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(2):121
    Vuillemin A, Horn F, Alawi M, et al. Preservation and significance of extracellular DNA in ferruginous sediments from Lake Towuti, Indonesia[J]. Frontiers in Microbiology, 2017, 8:1440
    Xue J, Feng Y. Determination of adsorption and desorption of DNA molecules on freshwater and marine sediments[J]. Journal of Applied Microbiology, 2018, 124(6):1480-1492
    Demanèche S, Jocteur-Monrozier L, Quiquampoix H, et al. Evaluation of biological and physical protection against nuclease degradation of clay-bound plasmid DNA[J]. Applied and Environmental Microbiology, 2001, 67(1):293-299
    Blum S A E, Lorenz M G, Wackernagel W. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils[J]. Systematic and Applied Microbiology, 1997, 20(4):513-521
    Crecchio C, Stotzky G. Binding of DNA on humic acids:Effect on transformation of Bacillus subtilis and resistance to DNase[J]. Soil Biology and Biochemistry, 1998, 30(8-9):1061-1067
    Pietramellara G, Franchi M, Gallori E, et al. Effect of molecular characteristics of DNA on its adsorption and binding on homoionic montmorillonite and kaolinite[J]. Biology and Fertility of Soils, 2001, 33(5):402-409
    Khanna M, Stotzky G. Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA[J]. Applied and Environmental Microbiology, 1992, 58(6):1930-1939
    Hou Y K, Wu P X, Zhu N W. The protective effect of clay minerals against damage to adsorbed DNA induced by cadmium and mercury[J]. Chemosphere, 2014, 95:206-212
    Franchi M, Bramanti E, Bonzi L M, et al. Clay-nucleic acid complexes:Characteristics and implications for the preservation of genetic material in primeval habitats[J]. Origins of Life and Evolution of the Biosphere, 1999, 29(3):297-315
    Cai P, Huang Q, Zhang X, et al. Adsorption of DNA on clay minerals and various colloidal particles from an Alfisol[J]. Soil Biology and Biochemistry, 2006, 38(3):471-476
    Gardner C M, Gunsch C K. Adsorption capacity of multiple DNA sources to clay minerals and environmental soil matrices less than previously estimated[J]. Chemosphere, 2017, 175:45-51
    Sirois S H, Buckley D H. Factors governing extracellular DNA degradation dynamics in soil[J]. Environmental Microbiology Reports, 2019, 11(2):173-184
    Gulden R H, Lerat S, Hart M M, et al. Quantitation of transgenic plant DNA in leachate water:Real-time polymerase chain reaction analysis[J]. Journal of Agricultural and Food Chemistry, 2005, 53(15):5858-5865
    Henriksen T M, Breland T A. Decomposition of crop residues in the field:Evaluation of a simulation model developed from microcosm studies[J]. Soil Biology and Biochemistry, 1999, 31(10):1423-1434
    Thomas C M, Nielsen K M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria[J]. Nature Reviews Microbiology, 2005, 3(9):711-721
    de Vries J, Wackernagel W. Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(4):2094-2099
    Nielsen K M, van Elsas J D. Stimulatory effects of compounds present in the rhizosphere on natural transformation of Acinetobacter sp. BD413 in soil[J]. Soil Biology and Biochemistry, 2001, 33(3):345-357
    Iwaki M, Arakawa Y. Transformation of Acinetobacter sp. BD413 with DNA from commercially available genetically modified potato and papaya[J]. Letters in Applied Microbiology, 2006, 43(2):215-221
    Nielsen K M, van Elsas J D, Smalla K. Transformation of Acinetobacter sp. strain BD413(pFG4ΔnptⅡ) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants[J]. Applied and Environmental Microbiology, 2000, 66(3):1237-1242
    Flury M, Flühler H, Jury W A, et al. Susceptibility of soils to preferential flow of water:A field study[J]. Water Resources Research, 1994, 30(7):1945-1954
    Bundt M, Widmer F, Pesaro M, et al. Preferential flow paths:Biological ‘hot spots’ in soils[J]. Soil Biology and Biochemistry, 2001, 33(6):729-738
    Gloag E S, Turnbull L, Huang A, et al. Self-organization of bacterial biofilms is facilitated by extracellular DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28):11541-11546
    Pammi M, Liang R, Hicks J, et al. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans[J]. BMC Microbiology, 2013, 13:257
    Böckelmann U, Janke A, Kuhn R, et al. Bacterial extracellular DNA forming a defined network-like structure[J]. FEMS Microbiology Letters, 2006, 262(1):31-38
    Mah T F C, O'Toole G A. Mechanisms of biofilm resistance to antimicrobial agents[J]. Trends in Microbiology, 2001, 9(1):34-39
    Okshevsky M, Meyer R L. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms[J]. Critical Reviews in Microbiology, 2015, 41(3):341-352
    Das T, Sharma P K, Busscher H J, et al. Role of extracellular DNA in initial bacterial adhesion and surface aggregation[J]. Applied and Environmental Microbiology, 2010, 76(10):3405-3408
    Sutherland I. Biofilm exopolysaccharides:A strong and sticky framework[J]. Microbiology, 2001, 147(Pt 1):3-9
    Mulcahy H, Charron-Mazenod L, Lewenza S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms[J]. PLoS Pathogens, 2008, 4(11):e1000213
    Dominiak D M, Nielsen J L, Nielsen P H. Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms[J]. Environmental Microbiology, 2011, 13(3):710-721
    Allesen-Holm M, Barken K B, Yang L, et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms[J]. Molecular Microbiology, 2006, 59(4):1114-1128
    Das T, Manefield M. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa[J]. PLoS One, 2012, 7(10):e46718
    Whitchurch C B, Tolker-Nielsen T, Ragas P C, et al. Extracellular DNA required for bacterial biofilm formation[J]. Science, 2002, 295(5559):1487
    Montanaro L, Poggi A, Visai L, et al. Extracellular DNA in biofilms[J]. The International Journal of Artificial Organs, 2011, 34(9):824-831
    Chiang W C, Nilsson M, Jensen P Ø, et al. Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms[J]. Antimicrobial Agents and Chemotherapy, 2013, 57(5):2352-2361
    Moscoso M, García E, López R. Biofilm formation by Streptococcus pneumoniae:Role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion[J]. Journal of Bacteriology, 2006, 188(22):7785-7795
    Izano E A, Amarante M A, Kher W B, et al. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms[J]. Applied and Environmental Microbiology, 2008, 74(2):470-476
    Qin Z Q, Ou Y Z, Yang L, et al. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis[J]. Microbiology, 2007, 153(Pt 7):2083-2092
    Doroshenko N, Tseng B S, Howlin R P, et al. Extracellular DNA impedes the transport of vancomycin in Staphylococcus epidermidis biofilms preexposed to subinhibitory concentrations of vancomycin[J]. Antimicrobial Agents and Chemotherapy, 2014, 58(12):7273-7282
    Gómez-Brandón M, Ascher-Jenull J, Bardelli T, et al. Ground cover and slope exposure effects on micro- and mesobiota in forest soils[J]. Ecological Indicators, 2017, 80:174-185
    Turner B L, Baxter R, Mahieu N, et al. Phosphorus compounds in subarctic Fennoscandian soils at the mountain birch (Betula pubescens)-tundra ecotone[J]. Soil Biology and Biochemistry, 2004, 36(5):815-823
    Turner B L, Newman S. Phosphorus cycling in wetland soils:The importance of phosphate diesters[J]. Journal of Environmental Quality, 2005, 34(5):1921-1929
    Sakcham B, Kumar A, Cao B. Extracellular DNA in monochloraminated drinking water and its influence on DNA-based profiling of a microbial community[J]. Environmental Science & Technology Letters, 2019, 6(5):306-312
    Guardiola M, Uriz M J, Taberlet P, et al. Deep-sea, deep-sequencing:Metabarcoding extracellular DNA from sediments of marine canyons[J]. PLoS One, 2015, 10(10):e0139633
    Vorkapic D, Pressler K, Schild S. Multifaceted roles of extracellular DNA in bacterial physiology[J]. Current Genetics, 2016, 62(1):71-79
    Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782
    Liu S S, Qu H M, Yang D, et al. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant[J]. Water Research, 2018, 136:131-136
    Czekalski N, Sigdel R, Birtel J, et al. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes[J]. Environment International, 2015, 81:45-55
    Luo Y, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 2010, 44(19):7220-7225
    Wang D N, Liu L, Qiu Z G, et al. A new adsorption-elution technique for the concentration of aquatic extracellular antibiotic resistance genes from large volumes of water[J]. Water Research, 2016, 92:188-198
    Zhang Y P, Niu Z G, Zhang Y, et al. Occurrence of intracellular and extracellular antibiotic resistance genes in coastal areas of Bohai Bay (China) and the factors affecting them[J]. Environmental Pollution, 2018, 236:126-136
    Lorenz M G, Wackernagel W. Natural genetic transformation of Pseudomonas stutzeri by sand-adsorbed DNA[J]. Archives of Microbiology, 1990, 154(4):380-385
    Lorenz M G, Aardema B W, Wackernagel W. Highly efficient genetic transformation of Bacillus subtilis attached to sand grains[J]. Journal of General Microbiology, 1988, 134(1):107-112
    Liang Z B, Keeley A. Filtration recovery of extracellular DNA from environmental water samples[J]. Environmental Science & Technology, 2013, 47(16):9324-9331
    Wen F S, White G J, VanEtten H D, et al. Extracellular DNA is required for root tip resistance to fungal infection[J]. Plant Physiology, 2009, 151(2):820-829
  • 加载中
计量
  • 文章访问数:  2491
  • HTML全文浏览数:  2491
  • PDF下载数:  123
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-27

环境胞外胞内DNA的行为归趋及生态功能研究进展

    通讯作者: 叶茂, E-mail: yemao@issas.ac.cn
    作者简介: 张忠云(1994-),女,博士研究生,研究方向为环境分子毒理学,E-mail:zyzhang@issas.ac.cn
  • 1. 中国科学院南京土壤研究所, 中国科学院土壤环境与污染修复重点实验室, 南京 210008;
  • 2. 中国科学院大学, 北京 100049;
  • 3. 南京农业大学, 资源与环境科学学院土壤生态实验室, 南京 210095;
  • 4. 生态环境部南京环境科学研究所, 土壤污染防治研究中心, 南京 210042
基金项目:

国家重点研发计划资助项目(2018FYC1803100);国家青年人才托举项目(2018QNRC001);国家自然科学基金面上项目(41771350);江苏省优秀青年基金资助项目(BK20180110)

摘要: 胞外DNA(extracellular DNA,extDNA)和胞内DNA(intracellular DNA,intDNA)广泛存在于陆生和水生生态环境系统中,密切参与环境-微生物和微生物种间的吸附、降解和自然转化等过程,在物质循环和基因信息传递中发挥重要的生态学作用。胞外DNA在环境中不易受核酸酶攻击,相对稳定,可作为历史微生物基因库,与胞内DNA都可反映功能基因丰度及其对应微生物活性;同时,胞外DNA是细胞生物膜中的重要组分,在微生物细胞抵御抗生素、重金属和农药等外来污染物胁迫中发挥了重要作用。本文从ext/intDNA环境行为、extDNA在生物膜中的环境作用、物质信息传递和ext/intDNA生态学功能等角度,综述了环境ext/intDNA的行为归趋及生态功能研究进展,提出了现阶段研究不足,并对未来研究方向进行了展望。本综述可为深入理解环境ext/intDNA的生态功能作用机制提供新的科学认知。

English Abstract

参考文献 (98)

目录

/

返回文章
返回