代谢组学在化学品风险评价中的应用

常静, 潘一帆, 魏若瑾, 李济彤, 杨璐, 朱莉飞, 王会利. 代谢组学在化学品风险评价中的应用[J]. 生态毒理学报, 2020, 15(6): 1-9. doi: 10.7524/AJE.1673-5897.20191223001
引用本文: 常静, 潘一帆, 魏若瑾, 李济彤, 杨璐, 朱莉飞, 王会利. 代谢组学在化学品风险评价中的应用[J]. 生态毒理学报, 2020, 15(6): 1-9. doi: 10.7524/AJE.1673-5897.20191223001
Chang Jing, Pan Yifan, Wei Ruojin, Li Jitong, Yang Lu, Zhu Lifei, Wang Huili. Application of Metabolomics in Chemical Risk Assessment[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 1-9. doi: 10.7524/AJE.1673-5897.20191223001
Citation: Chang Jing, Pan Yifan, Wei Ruojin, Li Jitong, Yang Lu, Zhu Lifei, Wang Huili. Application of Metabolomics in Chemical Risk Assessment[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 1-9. doi: 10.7524/AJE.1673-5897.20191223001

代谢组学在化学品风险评价中的应用

    作者简介: 常静(1990-),女,博士研究生,研究方向为生态毒理学,E-mail:changjingforever@163.com
    通讯作者: 王会利, E-mail: huiliwang@rcees.ac.cn
  • 基金项目:

    国家自然科学基金资助项目(41807478);公益性行业(农业)科研专项(201503108)

  • 中图分类号: X171.5

Application of Metabolomics in Chemical Risk Assessment

    Corresponding author: Wang Huili, huiliwang@rcees.ac.cn
  • Fund Project:
  • 摘要: 随着化学品的数量日益增长,其潜在毒性对人类及环境中的非靶标生物造成了严重威胁。化学品风险评估的速度已经跟不上化学品的发展速度,急需根据现代毒理学技术的发展,对化学品风险评估方法进行丰富与发展。代谢组学作为系统生物学最下游的组学技术,是整体性研究生命体系功能变化的重要学科之一。基于代谢组学的毒理学评价方法不仅具有成本低、周期短和实验动物消耗少等特点,而且可以快速筛选出低剂量化学品早期暴露的生物标记物,揭示化学品毒性作用通路及机制。本文主要介绍了代谢组学的起源与发展、代谢组学技术应用于毒理学评价的优势、案例及前景展望。
  • 加载中
  • Judson R, Richard A, Dix D J, et al. The toxicity data landscape for environmental chemicals[J]. Environmental Health Perspectives, 2009, 117(5):685-695
    Hartung T, Rovida C. Chemical regulators have overreached[J]. Nature, 2009, 460(7259):1080-1081
    Hartung T. Toxicology for the twenty-first century[J]. Nature, 2009, 460(7252):208-212
    Silbergeld E K, Mandrioli D, Cranor C F. Regulating chemicals:Law, science, and the unbearable burdens of regulation[J]. Annual Review of Public Health, 2015, 36:175-191
    何庆华, 郑宗坤, 任萍萍, 等. 代谢组学在毒理学研究中的应用[J]. 卫生研究, 2014, 43(1):161-165
    Oliver S G, Winson M K, Kell D B, et al. Systematic functional analysis of the yeast genome[J]. Trends in Biotechnology, 1998, 16(9):373-378
    Nicholson J K, Lindon J C, Holmes E. Metabonomics:Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11):1181-1189
    Fiehn O, Kopka J, Dormann P, et al. Metabolite profiling for plant functional genomics[J]. Nature Biotechnology, 2001, 19(2):173
    Fiehn O, Sumner L W, Rhee S Y, et al. Minimum reporting standards for plant biology context information in metabolomic studies[J]. Metabolomics, 2007, 3(3):195-201
    Griffin J L, Nicholls A W, Daykin C A, et al. Standard reporting requirements for biological samples in metabolomics experiments:Mammalian/in vivo experiments[J]. Metabolomics, 2007, 3(3):179-188
    Hardy N W, Taylor C F. A roadmap for the establishment of standard data exchange structures for metabolomics[J]. Metabolomics, 2007, 3(3):243-248
    Morrison N, Bearden D, Bundy J G, et al. Standard reporting requirements for biological samples in metabolomics experiments:Environmental context[J]. Metabolomics, 2007, 3(3):203-210
    Rubtsov D V, Jenkins H, Ludwig C, et al. Proposed reporting requirements for the description of NMR-based metabolomics experiments[J]. Metabolomics, 2007, 3(3):223-229
    Sansone S A, Schober D, Atherton H J, et al. Metabolomics standards initiative:Ontology working group work in progress[J]. Metabolomics, 2007, 3(3):249-256
    Fiehn O, Robertson D, Griffin J, et al. The metabolomics standards initiative (MSI)[J]. Metabolomics, 2007, 3(3):175-178
    Van der Werf M J, Takors R, Smedsgaard J, et al. Standard reporting requirements for biological samples in metabolomics experiments:Microbial and in vitro biology experiments[J]. Metabolomics, 2007, 3(3):189-194
    Goodacre R, Broadhurst D, Smilde A K, et al. Proposed minimum reporting standards for data analysis in metabolomics[J]. Metabolomics, 2007, 3(3):231-241
    Sumner L W, Amberg A, Barrett D, et al. Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI)[J]. Metabolomics, 2007, 3(3):211-221
    Beger R D, Dunn W B, Bandukwala A, et al. Towards quality assurance and quality control in untargeted metabolomics studies[J]. Metabolomics, 2019, 15(1):1-5
    Zhang A, Sun H, Wang P, et al. Modern analytical techniques in metabolomics analysis[J]. Analyst, 2012, 137(2):293-300
    Ravanbakhsh S, Liu P, Bjordahl T C, et al. Accurate, fully-automated NMR spectral profiling for metabolomics[J]. PLoS One, 2015, 10(5):1-15
    Jayavelu N D, Bar N S. Metabolomic studies of human gastric cancer:Review[J]. World Journal of Gastroenterology, 2014, 20(25):8092-8101
    Mir S A, Rajagopalan P, Jain A P, et al. LC-MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma[J]. Journal of Proteomics, 2015, 127:96-102
    Schauer N, Steinhauser D, Strelkov S, et al. GC-MS libraries for the rapid identification of metabolites in complex biological samples[J]. FEBS Letters, 2005, 579(6):1332-1337
    Buchholz A, Takors R, Wandrey C. Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques[J]. Analytical Biochemistry, 2001, 295(2):129-137
    廖春晓, 高文静, 李立明. 代谢组学在心血管流行病学研究中的应用[J]. 中华流行病学杂志, 2014, 35(5):610-612

    Liao C X, Gao W J, Li L M. Application of metabolomics in research on cardiovascular disease[J]. Chinese Journal of Epidemiology, 2014, 35(5):610-612(in Chinese)

    Wettersten H I, Weiss R H. Applications of metabolomics for kidney disease research from biomarkers to therapeutic targets[J]. Organogenesis, 2013, 9(1):11-18
    Schwab M, Fisel P, Schaeffeler E. Metabolomics and tumor diseases[J]. Pathologe, 2017, 38:202-204
    Kaddurah D R, Krishnan K R R. Metabolomics:A global biochemical approach to the study of central nervous system diseases[J]. Neuropsychopharmacology, 2009, 34(1):173-186
    Lin C Y, Viant M R, Tjeerdema R S. Metabolomics:Methodologies and applications in the environmental sciences[J]. Journal of Pesticide Science, 2006, 31(3):245-251
    Viant M R, Rosenblum E S, Tjeerdema R S. NMR-based metabolomics:A powerful approach for characterizing the effects of environmental stressors on organism health[J]. Environmental Science & Technology, 2003, 37(21):4982-4989
    Warne M A, Lenz E M, Osborn D, et al. An NMR-based metabonomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta[J]. Biomarkers, 2000, 5(1):56-72
    Levandi T, Leon C, Kaljurand M, et al. Capillary electrophoresis time-of-flight mass spectrometry for comparative metabolomics of transgenic versus conventional maize[J]. Analytical Chemistry, 2008, 80(16):6329-6335
    Simo C, Ibanez C, Valdes A, et al. Metabolomics of genetically modified crops[J]. International Journal of Molecular Sciences, 2014, 15(10):18941-18966
    Hoekenga O A. Using metabolomics to estimate unintended effects in transgenic crop plants:Problems, promises, and opportunities[J]. Journal of Biomolecular Techniques, 2008, 19(3):159-166
    Van Ravenzwaay B, Herold M, Kamp H, et al. Metabolomics:A tool for early detection of toxicological effects and an opportunity for biology based grouping of chemicals-From QSAR to QBAR[J]. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 2012, 746(2):144-150
    Davis J M, Ekman D R, Skelton D M, et al. Metabolomics for informing adverse outcome pathways:Androgen receptor activation and the pharmaceutical spironolactone[J]. Aquatic Toxicology, 2017, 184:103-115
    Southam A D, Lange A, Hines A, et al. Metabolomics reveals target and off-target toxicities of a model organophosphate pesticide to roach (Rutilus rutilus):Implications for biomonitoring[J]. Environmental Science & Technology, 2011, 45(8):3759-3767
    Dixit R, Riviere J, Krishnan K, et al. Toxicokinetics and physiologically based toxicokinetics in toxicology and risk assessment[J]. Journal of Toxicology and Environmental Health Part B Critical Reviews, 2003, 6(1):1-40
    Van Ravenzwaay B, Sperber S, Lemke O, et al. Metabolomics as read-across tool:A case study with phenoxy herbicides[J]. Regulatory Toxicology and Pharmacology, 2016, 81:288-304
    Blais E M, Rawls K D, Dougherty B V, et al. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions[J]. Nature Communications, 2017, 8:1-15
    Taylor N S, Gavin A, Viant M R. Metabolomics discovers early-response metabolic biomarkers that can predict chronic reproductive fitness in individual Daphnia magna[J]. Metabolites, 2018, 8(3):109501-109519
    Taylor N S, Weber R J M, White T A, et al. Discriminating between different acute chemical toxicities via changes in the daphnid metabolome[J]. Toxicological Sciences, 2010, 118(1):307-317
    Yan J, Zhu W, Wang D, et al. Different effects of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate on sex hormone levels, metabolic profile and oxidative stress in adult mice testes[J]. Environmental Research, 2019, 169:315-325
    Wei Z, Xi J, Gao S, et al. Metabolomics coupled with pathway analysis characterizes metabolic changes in response to BDE-3 induced reproductive toxicity in mice[J]. Scientific Reports, 2018, 8:5423
    Di Q N, Cao W X, Xu R, et al. Chronic low-dose exposure of nonylphenol alters energy homeostasis in the reproductive system of female rats[J]. Toxicology and Applied Pharmacology, 2018, 348:67-75
    Zhu Y, Zhang J, Liu Y, et al. Environmentally relevant concentrations of the flame retardant tris(1,3-dichloro-2-propyl) phosphate inhibit the growth and reproduction of earthworms in soil[J]. Environmental Science & Technology Letters, 2019, 6(5):277-282
    Jiang Y X, Shi W J, Ma D D, et al. Male-biased zebrafish sex differentiation and metabolomics profile changes caused by dydrogesterone[J]. Aquatic Toxicology, 2019, 214:105242
    Zhou X, Li Y, Li H, et al. Responses in the crucian carp (Carassius auratus) exposed to environmentally relevant concentration of 17 alpha-ethinylestradiol based on metabolomics[J]. Ecotoxicology and Environmental Safety, 2019, 183:1-8
    Wang X R, Wang D Z, Zhou Z Q, et al. Subacute oral toxicity assessment of benalaxyl in mice based on metabolomics methods[J]. Chemosphere, 2018, 191:373-380
    Gong Y, Zhang H, Geng N, et al. Short-chain chlorinated paraffins (SCCPs) disrupt hepatic fatty acid metabolism in liver of male rat via interacting with peroxisome proliferator-activated receptor a (PPAR alpha)[J]. Ecotoxicology and Environmental Safety, 2019, 181:164-171
    Olsvik P A, Larsen A K, Berntssen M H G, et al. Effects of agricultural pesticides in aquafeeds on wild fish feeding on leftover pellets near fish farms[J]. Frontiers in Genetics, 2019, 10:18
    Dong M, Xu X, Huang Q, et al. Dose-dependent effects of triclocarban exposure on lipid homeostasis in rats[J]. Chemical Research in Toxicology, 2019, 32(11):2320-2328
    Geng N, Ren X, Gong Y, et al. Integration of metabolomics and transcriptomics reveals short-chain chlorinated paraffin-induced hepatotoxicity in male Sprague Dawley rat[J]. Environment International, 2019, 133:105231-105241
    Zhang H, Shao X, Zhao H, et al. Integration of metabolomics and lipidomics reveals metabolic mechanisms of triclosan-induced toxicity in human hepatocytes[J]. Environmental Science & Technology, 2019, 53(9):5406-5415
    Zhao Y Y, Lin R C. Metabolomics in nephrotoxicity[J]. Advances in Clinical Chemistry, 2014, 65:69-89
    Zgoda P J R, Chowdhury S, Wirth M, et al. Metabolomics analysis reveals elevation of 3-indoxyl sulfate in plasma and brain during chemically-induced acute kidney injury in mice:Investigation of nicotinic acid receptor agonists[J]. Toxicology and Applied Pharmacology, 2011, 255(1):48-56
    Ranninger C, Rurik M, Limonciel A, et al. Nephron toxicity profiling via untargeted metabolome analysis employing a high performance liquid chromatography-mass spectrometry-based experimental and computational pipeline[J]. Journal of Biological Chemistry, 2015, 290(31):19121-19132
    Qiu J, Cheng J, Xie Y, et al. 1,4-Dioxane exposure induces kidney damage in mice by perturbing specific renal metabolic pathways:An integrated omics insight into the underlying mechanisms[J]. Chemosphere, 2019, 228:149-158
    Reiter L. Introduction to neurobehavioral toxicology[J]. Environmental Health Perspectives, 1978, 26:5-7
    Lei E N, Yau M S, Yeung C C, et al. Profiling of selected functional metabolites in the central nervous system of marine medaka (Oryzias melastigma) for environmental neurotoxicological assessments[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(2):269-280
    Faria M, Ziv T, Gomez C C, et al. Acrylamide acute neurotoxicity in adult zebrafish[J]. Scientific Reports, 2018(8):7918-7925
    Yau M S, Lei E N Y, Ng I H M, et al. Changes in the neurotransmitter profile in the central nervous system of marine medaka (Oryzias melastigma) after exposure to brevetoxin PbTx-1-A multivariate approach to establish exposure biomarkers[J]. Science of the Total Environment, 2019, 673:327-336
    Wang J, Li C L, Tu B J, et al. Integrated epigenetics, transcriptomics, and metabolomics to analyze the mechanisms of benzo a pyrene neurotoxicity in the hippocampus[J]. Toxicological Sciences, 2018, 166(1):65-81
    Zeng J, Kuang H, Hu C X, et al. Effect of bisphenol A on rat metabolic profiling studied by using capillary electrophoresis time-of-flight mass spectrometry[J]. Environmental Science & Technology, 2013, 47(13):7457-7465
    Miller M G. Environmental metabolomics:A SWOT analysis (strengths, weaknesses, opportunities, and threats)[J]. Journal of Proteome Research, 2007, 6(2):540-545
    Hines A, Staff F J, Widdows J, et al. Discovery of metabolic signatures for predicting whole organism toxicology[J]. Toxicological Sciences, 2010, 115(2):369-378
  • 加载中
计量
  • 文章访问数:  2009
  • HTML全文浏览数:  2009
  • PDF下载数:  132
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-23

代谢组学在化学品风险评价中的应用

    通讯作者: 王会利, E-mail: huiliwang@rcees.ac.cn
    作者简介: 常静(1990-),女,博士研究生,研究方向为生态毒理学,E-mail:changjingforever@163.com
  • 1. 中国科学院生态环境研究中心环境生物技术重点实验室, 北京 100085;
  • 2. 北京市水产科学研究所, 北京 100068
基金项目:

国家自然科学基金资助项目(41807478);公益性行业(农业)科研专项(201503108)

摘要: 随着化学品的数量日益增长,其潜在毒性对人类及环境中的非靶标生物造成了严重威胁。化学品风险评估的速度已经跟不上化学品的发展速度,急需根据现代毒理学技术的发展,对化学品风险评估方法进行丰富与发展。代谢组学作为系统生物学最下游的组学技术,是整体性研究生命体系功能变化的重要学科之一。基于代谢组学的毒理学评价方法不仅具有成本低、周期短和实验动物消耗少等特点,而且可以快速筛选出低剂量化学品早期暴露的生物标记物,揭示化学品毒性作用通路及机制。本文主要介绍了代谢组学的起源与发展、代谢组学技术应用于毒理学评价的优势、案例及前景展望。

English Abstract

参考文献 (67)

目录

/

返回文章
返回