代谢组学在化学品风险评价中的应用
Application of Metabolomics in Chemical Risk Assessment
-
摘要: 随着化学品的数量日益增长,其潜在毒性对人类及环境中的非靶标生物造成了严重威胁。化学品风险评估的速度已经跟不上化学品的发展速度,急需根据现代毒理学技术的发展,对化学品风险评估方法进行丰富与发展。代谢组学作为系统生物学最下游的组学技术,是整体性研究生命体系功能变化的重要学科之一。基于代谢组学的毒理学评价方法不仅具有成本低、周期短和实验动物消耗少等特点,而且可以快速筛选出低剂量化学品早期暴露的生物标记物,揭示化学品毒性作用通路及机制。本文主要介绍了代谢组学的起源与发展、代谢组学技术应用于毒理学评价的优势、案例及前景展望。Abstract: With the increasing amount of chemicals, the potential toxicity poses a serious threat to humans and non-target organisms in environment. As the speed of chemical risk assessment has not kept pace with the development of chemicals, it is urgent to enrich and develop the chemical risk assessment methods according to the modern toxicology technology. Metabolomics, as the downstream omics technology of system biology, is one of the important subjects to study the function changes of life system integrality. The toxicological evaluation method based on metabolomics is not only characterized by the low cost, short experiment cycle and low consumption of experimental animals, but also stand out from the quickly biomarker screening of early low dose chemical exposure and unraveling the pathway and mechanism of chemical toxicity. This paper mainly introduced the origin and development of metabolomics, the advantages, cases and prospects of the application of metabolomics in toxicological evaluation.
-
Key words:
- metabolomics /
- nuclear magnetic resonance (NMR) /
- mass spectra /
- toxicology /
- toxic mechanism
-
Judson R, Richard A, Dix D J, et al. The toxicity data landscape for environmental chemicals[J]. Environmental Health Perspectives, 2009, 117(5):685-695 Hartung T, Rovida C. Chemical regulators have overreached[J]. Nature, 2009, 460(7259):1080-1081 Hartung T. Toxicology for the twenty-first century[J]. Nature, 2009, 460(7252):208-212 Silbergeld E K, Mandrioli D, Cranor C F. Regulating chemicals:Law, science, and the unbearable burdens of regulation[J]. Annual Review of Public Health, 2015, 36:175-191 何庆华, 郑宗坤, 任萍萍, 等. 代谢组学在毒理学研究中的应用[J]. 卫生研究, 2014, 43(1):161-165 Oliver S G, Winson M K, Kell D B, et al. Systematic functional analysis of the yeast genome[J]. Trends in Biotechnology, 1998, 16(9):373-378 Nicholson J K, Lindon J C, Holmes E. Metabonomics:Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11):1181-1189 Fiehn O, Kopka J, Dormann P, et al. Metabolite profiling for plant functional genomics[J]. Nature Biotechnology, 2001, 19(2):173 Fiehn O, Sumner L W, Rhee S Y, et al. Minimum reporting standards for plant biology context information in metabolomic studies[J]. Metabolomics, 2007, 3(3):195-201 Griffin J L, Nicholls A W, Daykin C A, et al. Standard reporting requirements for biological samples in metabolomics experiments:Mammalian/in vivo experiments[J]. Metabolomics, 2007, 3(3):179-188 Hardy N W, Taylor C F. A roadmap for the establishment of standard data exchange structures for metabolomics[J]. Metabolomics, 2007, 3(3):243-248 Morrison N, Bearden D, Bundy J G, et al. Standard reporting requirements for biological samples in metabolomics experiments:Environmental context[J]. Metabolomics, 2007, 3(3):203-210 Rubtsov D V, Jenkins H, Ludwig C, et al. Proposed reporting requirements for the description of NMR-based metabolomics experiments[J]. Metabolomics, 2007, 3(3):223-229 Sansone S A, Schober D, Atherton H J, et al. Metabolomics standards initiative:Ontology working group work in progress[J]. Metabolomics, 2007, 3(3):249-256 Fiehn O, Robertson D, Griffin J, et al. The metabolomics standards initiative (MSI)[J]. Metabolomics, 2007, 3(3):175-178 Van der Werf M J, Takors R, Smedsgaard J, et al. Standard reporting requirements for biological samples in metabolomics experiments:Microbial and in vitro biology experiments[J]. Metabolomics, 2007, 3(3):189-194 Goodacre R, Broadhurst D, Smilde A K, et al. Proposed minimum reporting standards for data analysis in metabolomics[J]. Metabolomics, 2007, 3(3):231-241 Sumner L W, Amberg A, Barrett D, et al. Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI)[J]. Metabolomics, 2007, 3(3):211-221 Beger R D, Dunn W B, Bandukwala A, et al. Towards quality assurance and quality control in untargeted metabolomics studies[J]. Metabolomics, 2019, 15(1):1-5 Zhang A, Sun H, Wang P, et al. Modern analytical techniques in metabolomics analysis[J]. Analyst, 2012, 137(2):293-300 Ravanbakhsh S, Liu P, Bjordahl T C, et al. Accurate, fully-automated NMR spectral profiling for metabolomics[J]. PLoS One, 2015, 10(5):1-15 Jayavelu N D, Bar N S. Metabolomic studies of human gastric cancer:Review[J]. World Journal of Gastroenterology, 2014, 20(25):8092-8101 Mir S A, Rajagopalan P, Jain A P, et al. LC-MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma[J]. Journal of Proteomics, 2015, 127:96-102 Schauer N, Steinhauser D, Strelkov S, et al. GC-MS libraries for the rapid identification of metabolites in complex biological samples[J]. FEBS Letters, 2005, 579(6):1332-1337 Buchholz A, Takors R, Wandrey C. Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques[J]. Analytical Biochemistry, 2001, 295(2):129-137 廖春晓, 高文静, 李立明. 代谢组学在心血管流行病学研究中的应用[J]. 中华流行病学杂志, 2014, 35(5):610-612 Liao C X, Gao W J, Li L M. Application of metabolomics in research on cardiovascular disease[J]. Chinese Journal of Epidemiology, 2014, 35(5):610-612(in Chinese)
Wettersten H I, Weiss R H. Applications of metabolomics for kidney disease research from biomarkers to therapeutic targets[J]. Organogenesis, 2013, 9(1):11-18 Schwab M, Fisel P, Schaeffeler E. Metabolomics and tumor diseases[J]. Pathologe, 2017, 38:202-204 Kaddurah D R, Krishnan K R R. Metabolomics:A global biochemical approach to the study of central nervous system diseases[J]. Neuropsychopharmacology, 2009, 34(1):173-186 Lin C Y, Viant M R, Tjeerdema R S. Metabolomics:Methodologies and applications in the environmental sciences[J]. Journal of Pesticide Science, 2006, 31(3):245-251 Viant M R, Rosenblum E S, Tjeerdema R S. NMR-based metabolomics:A powerful approach for characterizing the effects of environmental stressors on organism health[J]. Environmental Science & Technology, 2003, 37(21):4982-4989 Warne M A, Lenz E M, Osborn D, et al. An NMR-based metabonomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta[J]. Biomarkers, 2000, 5(1):56-72 Levandi T, Leon C, Kaljurand M, et al. Capillary electrophoresis time-of-flight mass spectrometry for comparative metabolomics of transgenic versus conventional maize[J]. Analytical Chemistry, 2008, 80(16):6329-6335 Simo C, Ibanez C, Valdes A, et al. Metabolomics of genetically modified crops[J]. International Journal of Molecular Sciences, 2014, 15(10):18941-18966 Hoekenga O A. Using metabolomics to estimate unintended effects in transgenic crop plants:Problems, promises, and opportunities[J]. Journal of Biomolecular Techniques, 2008, 19(3):159-166 Van Ravenzwaay B, Herold M, Kamp H, et al. Metabolomics:A tool for early detection of toxicological effects and an opportunity for biology based grouping of chemicals-From QSAR to QBAR[J]. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 2012, 746(2):144-150 Davis J M, Ekman D R, Skelton D M, et al. Metabolomics for informing adverse outcome pathways:Androgen receptor activation and the pharmaceutical spironolactone[J]. Aquatic Toxicology, 2017, 184:103-115 Southam A D, Lange A, Hines A, et al. Metabolomics reveals target and off-target toxicities of a model organophosphate pesticide to roach (Rutilus rutilus):Implications for biomonitoring[J]. Environmental Science & Technology, 2011, 45(8):3759-3767 Dixit R, Riviere J, Krishnan K, et al. Toxicokinetics and physiologically based toxicokinetics in toxicology and risk assessment[J]. Journal of Toxicology and Environmental Health Part B Critical Reviews, 2003, 6(1):1-40 Van Ravenzwaay B, Sperber S, Lemke O, et al. Metabolomics as read-across tool:A case study with phenoxy herbicides[J]. Regulatory Toxicology and Pharmacology, 2016, 81:288-304 Blais E M, Rawls K D, Dougherty B V, et al. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions[J]. Nature Communications, 2017, 8:1-15 Taylor N S, Gavin A, Viant M R. Metabolomics discovers early-response metabolic biomarkers that can predict chronic reproductive fitness in individual Daphnia magna[J]. Metabolites, 2018, 8(3):109501-109519 Taylor N S, Weber R J M, White T A, et al. Discriminating between different acute chemical toxicities via changes in the daphnid metabolome[J]. Toxicological Sciences, 2010, 118(1):307-317 Yan J, Zhu W, Wang D, et al. Different effects of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate on sex hormone levels, metabolic profile and oxidative stress in adult mice testes[J]. Environmental Research, 2019, 169:315-325 Wei Z, Xi J, Gao S, et al. Metabolomics coupled with pathway analysis characterizes metabolic changes in response to BDE-3 induced reproductive toxicity in mice[J]. Scientific Reports, 2018, 8:5423 Di Q N, Cao W X, Xu R, et al. Chronic low-dose exposure of nonylphenol alters energy homeostasis in the reproductive system of female rats[J]. Toxicology and Applied Pharmacology, 2018, 348:67-75 Zhu Y, Zhang J, Liu Y, et al. Environmentally relevant concentrations of the flame retardant tris(1,3-dichloro-2-propyl) phosphate inhibit the growth and reproduction of earthworms in soil[J]. Environmental Science & Technology Letters, 2019, 6(5):277-282 Jiang Y X, Shi W J, Ma D D, et al. Male-biased zebrafish sex differentiation and metabolomics profile changes caused by dydrogesterone[J]. Aquatic Toxicology, 2019, 214:105242 Zhou X, Li Y, Li H, et al. Responses in the crucian carp (Carassius auratus) exposed to environmentally relevant concentration of 17 alpha-ethinylestradiol based on metabolomics[J]. Ecotoxicology and Environmental Safety, 2019, 183:1-8 Wang X R, Wang D Z, Zhou Z Q, et al. Subacute oral toxicity assessment of benalaxyl in mice based on metabolomics methods[J]. Chemosphere, 2018, 191:373-380 Gong Y, Zhang H, Geng N, et al. Short-chain chlorinated paraffins (SCCPs) disrupt hepatic fatty acid metabolism in liver of male rat via interacting with peroxisome proliferator-activated receptor a (PPAR alpha)[J]. Ecotoxicology and Environmental Safety, 2019, 181:164-171 Olsvik P A, Larsen A K, Berntssen M H G, et al. Effects of agricultural pesticides in aquafeeds on wild fish feeding on leftover pellets near fish farms[J]. Frontiers in Genetics, 2019, 10:18 Dong M, Xu X, Huang Q, et al. Dose-dependent effects of triclocarban exposure on lipid homeostasis in rats[J]. Chemical Research in Toxicology, 2019, 32(11):2320-2328 Geng N, Ren X, Gong Y, et al. Integration of metabolomics and transcriptomics reveals short-chain chlorinated paraffin-induced hepatotoxicity in male Sprague Dawley rat[J]. Environment International, 2019, 133:105231-105241 Zhang H, Shao X, Zhao H, et al. Integration of metabolomics and lipidomics reveals metabolic mechanisms of triclosan-induced toxicity in human hepatocytes[J]. Environmental Science & Technology, 2019, 53(9):5406-5415 Zhao Y Y, Lin R C. Metabolomics in nephrotoxicity[J]. Advances in Clinical Chemistry, 2014, 65:69-89 Zgoda P J R, Chowdhury S, Wirth M, et al. Metabolomics analysis reveals elevation of 3-indoxyl sulfate in plasma and brain during chemically-induced acute kidney injury in mice:Investigation of nicotinic acid receptor agonists[J]. Toxicology and Applied Pharmacology, 2011, 255(1):48-56 Ranninger C, Rurik M, Limonciel A, et al. Nephron toxicity profiling via untargeted metabolome analysis employing a high performance liquid chromatography-mass spectrometry-based experimental and computational pipeline[J]. Journal of Biological Chemistry, 2015, 290(31):19121-19132 Qiu J, Cheng J, Xie Y, et al. 1,4-Dioxane exposure induces kidney damage in mice by perturbing specific renal metabolic pathways:An integrated omics insight into the underlying mechanisms[J]. Chemosphere, 2019, 228:149-158 Reiter L. Introduction to neurobehavioral toxicology[J]. Environmental Health Perspectives, 1978, 26:5-7 Lei E N, Yau M S, Yeung C C, et al. Profiling of selected functional metabolites in the central nervous system of marine medaka (Oryzias melastigma) for environmental neurotoxicological assessments[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(2):269-280 Faria M, Ziv T, Gomez C C, et al. Acrylamide acute neurotoxicity in adult zebrafish[J]. Scientific Reports, 2018(8):7918-7925 Yau M S, Lei E N Y, Ng I H M, et al. Changes in the neurotransmitter profile in the central nervous system of marine medaka (Oryzias melastigma) after exposure to brevetoxin PbTx-1-A multivariate approach to establish exposure biomarkers[J]. Science of the Total Environment, 2019, 673:327-336 Wang J, Li C L, Tu B J, et al. Integrated epigenetics, transcriptomics, and metabolomics to analyze the mechanisms of benzo a pyrene neurotoxicity in the hippocampus[J]. Toxicological Sciences, 2018, 166(1):65-81 Zeng J, Kuang H, Hu C X, et al. Effect of bisphenol A on rat metabolic profiling studied by using capillary electrophoresis time-of-flight mass spectrometry[J]. Environmental Science & Technology, 2013, 47(13):7457-7465 Miller M G. Environmental metabolomics:A SWOT analysis (strengths, weaknesses, opportunities, and threats)[J]. Journal of Proteome Research, 2007, 6(2):540-545 Hines A, Staff F J, Widdows J, et al. Discovery of metabolic signatures for predicting whole organism toxicology[J]. Toxicological Sciences, 2010, 115(2):369-378
计量
- 文章访问数: 2009
- HTML全文浏览数: 2009
- PDF下载数: 132
- 施引文献: 0